scholarly journals Effects of pretreatments of some growth regulators on the stomata movements of barley seedlings grown under saline (NaCl) conditions

2008 ◽  
Vol 53 (No. 12) ◽  
pp. 524-528 ◽  
Author(s):  
K. Çavuşoğlu ◽  
S. Kılıç ◽  
K. Kabar

In this work, the effects of double, triple and quadruple combinations of gibberellic acid, kinetin, 24-epibrassinolide and polyamines (cadaverine, putrescine, spermidine, spermine) on the stomata movements in the leaves of barley seedlings grown under saline conditions were studied. In the control seedlings, the stomata number, stomata index and stomata length increased in the upper surfaces of leaves in comparison with their lower surfaces. In addition, the epidermis cell number in the leaves of control plants were fewer in the upper surface than that in the lower surface, but the stomata were statistically in the equal width in both surfaces. As for the applyings, they generally decreased stomata number, stomata index, stomata length and epidermis cell number, while they increased the stomata width in the upper and especially in the lower surface according to the control. The growth regulators used may have served to adaptation of barley seedlings to saline conditions by causing a decrease in most of the mentioned parameters.

1981 ◽  
Vol 38 (1) ◽  
pp. 99-112
Author(s):  
Paulo R.C. Castro ◽  
Roberto S. Moraes

This research deals with the effects of growth regulators on flowering and pod formation in soybean plant (Glycine max cv. Davis). Under greenhouse conditions, soybean plants were sprayed with 2,3,5-triiodobenzoic acid (TIBA) 20 ppm, Agrostemmin (1g/10 ml/3 l) gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm. Application of TIBA increased number of flowers. 'Davis' soybean treated with CCC and TIBA presented a tendency to produce a lower number of pods.


2016 ◽  
Vol 38 (3) ◽  
Author(s):  
JULIANA DOMINGUES LIMA ◽  
JÉSSICA SANTA ROSA ◽  
DANILO EDUARDO ROZANE ◽  
EDUARDO NARDINI GOMES ◽  
SILVIA HELENA MODENESE GORLA DA SILVA

ABSTRACT Plant growth regulators can influence fruit yield and quality. This study aimed to evaluate the effect of cytokinin and gibberelin on the agronomic and physicochemical characteristics of banana fruits cv. ‘Prata’ (Musa spp. AAB), according to the formation period and position in the bunch. The experiment was conducted in a completely randomized 2 x 5 factorial design, two periods of bunch development (summer and winter), five treatments and ten replicates. To study the effect of position in the bunch, split plot was adopted, considering in the plot, 2 x 5 factorial and in subplots, hand 1, hand 4 and last hand. Treatments consisted of 2 pulverizations with water, 150 mg L-1 cytokinin, 200 mg L-1 of gibberellic acid, 100 mg L-1 of cytokinin plus 200 mg L-1 of gibberellic acid and 200 mg L-1 of cytokinin plus 200 mg L-1 of gibberellic acid, applied from the fourth to the last hand of the bunch. Cytokinin and gibberellin, alone or associated, regardless of formation period and position, did not affect the size and physicochemical characteristics of fruits, only delayed the bunch harvest.


2013 ◽  
Vol 13 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Zdenka Girek ◽  
Slaven Prodanovic ◽  
Jasmina Zdravkovic ◽  
Tomislav Zivanovic ◽  
Milan Ugrinovic ◽  
...  

Seven traits related to flowering and sex expression in melon were studied and their reaction to application of two growth regulators (ethrel and gibberellic acid) was observed. Four monoecious genotypes (Sesame, ED-3, ED-4, Pobeditel) and four andromonoecious genotypes (Chinese muskmelon, Anannas, Fiata, A2-3lb) had been used for experiments. According to the results, ethrel had higher effects on the investigated traits than gibberellic acid. Ethrel increased the number of perfect flowers per plant for 7.18 (31.42%), reduced the number of male flowers per plant for 21.47 (17.98%), affected earlier appearance of the first pistillate/perfect flower for 3.68 days, and delayed the appearance of the first staminate flower for 16.07 days. Changes in the last two traits caused an extension of the period from the emergence of the first pistillate/perfect to the first staminate flower from 0.1 to 21.57 days, which represents the strongest effect of ethrel. Gibberellic acid had generally opposite effects on the studied traits.


1981 ◽  
Vol 38 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Paulo R.C. Castro ◽  
Roberto S. Moraes

This research deals with the effects of exogenous growth regulators on production of soybean plant (Glycine max cv.. Davis) under greenhouse conditions, At the flower anthesis, 2,3,5-triiodobenzoic acid (TIBA) 20 ppm was applied. Other two applications with TiBA, with intervals of four days, were realized. Before flowering, Agrostemin (1 g/10 ml/3 1), gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm were applied. It was observed that CCC and TIBA reduced stem dry weight. Soybean plants treated with TIBA reduced weight of pods without seeds , seed number and seed weight.


2021 ◽  
Vol 12 (2) ◽  
pp. 294-300
Author(s):  
V. V. Rogach ◽  
V. G. Kuryata ◽  
I. V. Kosakivska ◽  
L. V. Voitenko ◽  
M. M. Shcherbatiuk ◽  
...  

One of the main tasks of modern plant physiology is regulation of growth and development of cultivated plants in order to optimize the productive process. The attention of the scientific community is focused on the use of natural activators and growth inhibitors. We investigated the effect of foliar treatment with 0.005% solution of gibberellic acid (GA3) and 0.025% solution of the antigibberellic preparation tebuconazole (EW-250) on morphogenesis, leaf mesostructure, the content of photosynthetic pigments, the balance of endogenous phytohormones and productivity of Capsicum annuum L., Antey variety. The vegetation experiment was carried out in the conditions of soil-sand culture in vessels with a volume of 10 L. Treatment of plants was carried out in the budding phase. Morphometric parameters were determined every 10 days. The mesostructure of the middle tier leaves was studied in the fruit formation phase, and the chlorophyll content was determined in the raw material by spectrophotometric method. Analytical determination of endogenous phytohormones – indolyl-3-acetic (IAA), gibberellic (GA3) and abscisic (ABA) acids and cytokinins – zeatin (Z), zeatin-O-glucoside (ZG), zeatinribozide (ZR), isopentenyladenine (iP) and isopentenyladenosine (iPA) were performed by high performance liquid chromatography – mass spectrometry (HPLC-MS). With GA3 treatment, plant height increased considerably, while with EW-250, it decreased. Both regulators led to an increase in the number of leaves on the plant, the leaf raw biomass, stems and roots and the dry matter of the whole plant, the area of a single leaf blade and the total area of leaves on the plant. Under the action of EW-250, the chlorophyll content in the leaves surged, while under the action of GA3 it tended to decrease or did not change at all. Both regulators thickened the chlorenchyma and boosted the volume of the columnar parenchyma cells. GA3 treatment induced a rise in the thickness of the upper and lower epidermis, and EW-250 led, on the contrary, to a decrease. It is shown that after treatment with exogenous GA3, the content of endogenous IAA and ABA decreased and GA3 in plant stems increased. Instead, EW-250 caused a decrease in the levels of GA3, IAA and ABA in the stems. Exogenous GA3 enhanced the accumulation of endogenous GA3 and IAA and inhibited ABA in the leaves. Under the action of the retardant, the level of ABA in the leaves did not change, while GA3 and IAA decreased. Treatment of plants with the studied growth regulators caused a decrease in the pool of cytokinins (CK) in stems. EW-250 showed a significant rise in the hormone content in the leaves. After spraying with GA3 solution, the level of ZG, Z and ZR grew. Under the action of the retardant, the increase in the CK pool occurred exclusively due to the iP. Growth regulators optimized the productivity of sweet pepper plants: under the action of GA3 there was an increase in the number of fruits per plant, and after the use of EW-250 there was a rise in the average weight of one fruit. The obtained results showed that anatomical-morphological and structural-functional rearrangements of sweet pepper plants under the action of exogenous gibberellic acid and EW-250 took place against the background of changes in the balance and distribution of endogenous hormones. Increased photosynthetic activity, stimulation of growth processes of some plant organs and inhibition of others enlarged biological productivity of the culture.


2008 ◽  
Vol 54 (No. 10) ◽  
pp. 428-433 ◽  
Author(s):  
K. Çavuşoğlu ◽  
S. Kılıç ◽  
K. Kabar

In this work, effects of gibberellic acid, 2-chloroethylphosphonic acid (ethephon), triacontanol, 24-epibrassinolide and polyamine (cadaverine, putrescine, spermidine, spermine) pretreatments on the stem anatomy of radish seedlings grown under saline conditions were studied. Salt stress decreased the stem diameter, epidermis cell size, cortex zone thickness, vascular bundle width, cambium thickness, xylem width, trachea diameter and phloem width in the seedlings non-pretreated with the growth regulators, in comparison with the control seedlings grown in distilled water medium. In addition, it slightly increased the cuticle thickness. On the other hand, many of the growth regulator pretreatments more or less stimulated the stem diameter, epidermis cell width, cortex zone thickness, vascular bundle width, xylem width, trachea diameter and phloem width in comparison with the control seedlings grown on saline medium. Moreover, they generally reduced the cuticle thickness, epidermis cell length and cambium thickness.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
El Hadi Hadia ◽  
Amor Slama ◽  
Leila Romdhane ◽  
Hatem Cheikh M’hamed ◽  
Ahmed Houssein Abodoma ◽  
...  

To study the effects of salt stress and plant growth regulators (kinetin, gibberellic acid, potassium) on growth, yield, glycine betaine content, phosphoenolpyruvate carboxylase (PEPC) and ribulose biphosphate carboxylase (RBC) gene expression of two Libyan bread wheat varieties, a factorial design of greenhouse experiment with three replications was conducted. Results revealed that salt stress significantly reduced plant growth and productivity of both varieties. Moreover, the addition of kinetin + potassium and gibberellic acid + potassium had improved the performance of the morpho-metric parameters of both genotypes under salt stress; but the performance was more effective for kinetin treatment than for gibberellic acid. At the biochemical level, the results showed that salt stress increased glycine betaine contents in both varieties with different proportions. This increase is more elevated in the presence of kinetin + potassium than the treatment with gibberellic acid+ potassium, which showed an almost similar result as in only salt stress. At the molecular level, the effects of salt stress and plant growth regulators on the PEPC and RBC gene expression showed that the increase was significantly higher for kinetin, gibberellic acid, and salt stress when compared to the control.


1972 ◽  
Vol 23 (1) ◽  
pp. 17 ◽  
Author(s):  
JA Considine ◽  
PE Kriedemann

A technique was devised to measure the internal turgor pressure required for fruit rupture in order to assess resistance to splitting objectively rather than rely solely on field observation. In the laboratory, fruit of uniform maturity and known osmotic potential were immersed in a range of osmotica to create a known turgor pressure at equilibrium. "Critical turgor", the pressure which resulted in 50% of the berries splitting, was approximately 15 atm in grape cultivars prone to splitting and 40 atm in resistant cultivars. Cultural treatments with growth regulators subsequently affected fruit resilience. p-Chlorophenoxyacetic acid lowered critical turgor, while gibberellic acid caused an increase. These laboratory-based observations coincided with field experience. Additional factors in fruit splitting, including berry morphology and anatomy, are discussed.


Sign in / Sign up

Export Citation Format

Share Document