scholarly journals   Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress

2012 ◽  
Vol 58 (No. 4) ◽  
pp. 186-191 ◽  
Author(s):  
X.C. Zhu ◽  
F.B. Song ◽  
S.Q. Liu ◽  
T.D. Liu ◽  
X. Zhou

The influences of arbuscular mycorrhizal (AM) fungus on growth, gas exchange, chlorophyll concentration, chlorophyll fluorescence and water status of maize (Zea mays L.) plants were studied in pot culture under well-watered and drought stress conditions. The maize plants were grown in a sand and black soil mixture for 4 weeks, and then exposed to drought stress for 4 weeks. Drought stress significantly decreased AM colonization and total dry weight. AM symbioses notably enhanced net photosynthetic rate and transpiration rate, but decreased intercellular CO<sub>2</sub> concentration of maize plants regardless of water treatments. Mycorrhizal plants had higher stomatal conductance than non-mycorrhizal plants under drought stress. The concentrations of chlorophyll were higher in mycorrhizal than non-mycorrhizal plants under drought stress. AM colonization significantly increased maximal fluorescence, maximum quantum efficiency of PSII photochemistry and potential photochemical efficiency, but decreased primary fluorescence under well-watered and droughted conditions. Mycorrhizal maize plants had higher relative water content and water use efficiency under drought stress compared with non-mycorrhizal plants. The results indicated that AM symbiosis alleviates the toxic effect of drought stress via improving photosynthesis and water status of maize plants. &nbsp;

2020 ◽  
Vol 155 ◽  
pp. 147-160
Author(s):  
Sadia Majeed ◽  
Fahim Nawaz ◽  
Muhammad Naeem ◽  
Muhammad Yasin Ashraf ◽  
Samina Ejaz ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 870
Author(s):  
Muhammad Aammar Tufail ◽  
María Touceda-González ◽  
Ilaria Pertot ◽  
Ralf-Udo Ehlers

Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). A pot experiment was conducted whereby treatments consisted of maize plants cultivated under drought stress, in soil with a low nitrogen concentration and these two stress sources combined, with and without G. diazotrophicus seed inoculation. The inoculated plants showed increased plant biomass, chlorophyll content, plant nitrogen uptake, and water use efficiency. A general increase in copy numbers of G. diazotrophicus, based on 16S rRNA gene quantification, was detected under combined moderate stress, in addition to an increase in the abundance of genes involved in N fixation (nifH). Endophytic colonization of bacteria was negatively affected by severe stress treatments. Overall, G. diazotrophicus Pal5 can be considered as an effective tool to increase maize crop production under drought conditions with low application of nitrogen fertilizer.


2020 ◽  
Author(s):  
Lidia Tumanova ◽  
◽  
Cristina Grajdieru ◽  
Valentin Mitin ◽  
◽  
...  
Keyword(s):  
Zea Mays ◽  

Sign in / Sign up

Export Citation Format

Share Document