scholarly journals Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China  

2013 ◽  
Vol 59 (No. 7) ◽  
pp. 295-302 ◽  
Author(s):  
B. Ji ◽  
Y. Zhao ◽  
X. Mu ◽  
K. Liu ◽  
C. Li

Subsoil compaction can result in unfavourable soil physical conditions and hinder the root growth of maize. The effects of deep tillage and conventional tillage on soil physical properties and root growth of maize were studied during 2010–2011 at two sites (loam at Hebi and clay at Luohe) in central China. The results showed that soil penetration resistance, bulk density, water content and root length density were significantly affected by tillage, soil depth and year. Deep tillage had lower penetration resistance and lower soil bulk density, but higher soil water content than conventional tillage across years and depths. Averaged over the whole soil profile, deep tillage not only significantly decreased penetration resistance and soil bulk density, but significantly increased soil water content and root length density on loam, while deep tillage only significantly increased the root length density on clay. We conclude that deep tillage on the loam is more suitable for the root growth of summer maize.

2012 ◽  
Vol 36 (1) ◽  
pp. 63-70 ◽  
Author(s):  
José Euripides Baquero ◽  
Ricardo Ralisch ◽  
Cristiane de Conti Medina ◽  
João Tavares Filho ◽  
Maria de Fátima Guimarães

Sugarcane, which involves the use of agricultural machinery in all crop stages, from soil preparation to harvest, is currently one of the most relevant crops for agribusiness in Brazil. The purpose of this study was to investigate soil physical properties and root growth in a eutroferric red Oxisol (Latossolo Vermelho eutroférrico) after different periods under sugarcane. The study was carried out in a cane plantation in Rolândia, Paraná State, where treatments consisted of a number of cuts (1, 3, 8, 10 and 16), harvested as green and burned sugarcane, at which soil bulk density, macro and microporosity, penetration resistance, as well as root length, density and area were determined. Results showed that sugarcane management practices lead to alterations in soil penetration resistance, bulk density and porosity, compared to native forest soil. These alterations in soil physical characteristics impede the full growth of the sugarcane root system beneath 10 cm, in all growing seasons analyzed.


Irriga ◽  
2007 ◽  
Vol 12 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Charles Duruoha ◽  
Cassio Roberto Piffer ◽  
Paulo Arbex Silva

CORN ROOT LENGTH DENSITY AND ROOT DIAMETER AS AFFECTED BY SOIL COMPACTION AND SOIL WATER CONTENT  Charles Duruoha1; Cassio Roberto Piffer2; Paulo Arbex Silva2(1) United States Department of Agriculture (USDA-ARS), National Soil Dynamics Laboratory, Auburn, AL - U.S.A, [email protected] (2) Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, Departamento de Engenharia Rural, Botucatu, SP  1 ABSTRACT Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm-3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 x 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm-3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm-3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm-3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities. KEYWORDS: Soil compaction, water, bulk density, soil strength, root growth.  DURUOHA, C.; PIFFER, C. R.; SILVA, P. A. COMPRIMENTO E DIÂMETRO RADICULAR DO MILHO, EM FUNÇÃO DA COMPACTAÇÃO E DO TEOR DE ÁGUA NO SOLO     2 RESUMO Os efeitos negativos da compactação do solo vêm sendo reconhecidos como um dos problemas que restringe o sistema radicular e conseqüentemente, impede a produção agrícola, especialmente no sudoeste dos Estados Unidos. Simulações de camadas de restrição de raízes, em casa de vegetação, são necessárias para desenvolver mecanismos que reduzam problemas de compactação dos solos. A seleção de três diferentes densidades de solo, baseadas no ensaio de Proctor é também um fator importante para determinar qual densidade restringe a penetração da raiz. O experimento foi conduzido para avaliar o comprimento e diâmetro radicular da cultura do milho (Zea mays L.), em função da densidade do solo e do estresse hídrico, caracterizado pelas densidades (1,2; 1,4 e 1,6 cm-3) e dois níveis de teor de água (70 e 90 % da capacidade de campo). O método estatístico utilizado foi inteiramente casualizado, com quatro repetições, em arranjo fatorial (3 x 2). Os vasos foram montados em tubos de PVC, com diâmetro interno de 20 cm, sobrepostos, totalizando 40 cm de altura (anel superior com 20 cm e anéis compactado e inferior com 10 cm), a camada com diferentes níveis de solo compactado foi instalada entre 20 e 30 cm de profundidade nos vasos. Os resultados indicaram, através da resistência mecânica que na camada superior as raízes conseguiram penetrar até onde havia condições favoráveis do solo, antes que o sistema radicular fosse afetado de 3,16; 2,41 e 1,37 cm cm-3 (P<0.005). Ocorreu diferença significativa na camada compactada para os dois níveis de teor de água, sendo que a 90 % da capacidade de campo houve uma redução do crescimento radicular de 0,91 para 0,60 cm cm-3 (P<0,005). O comprimento e o diâmetro radicular foram afetados pelo aumento da densidade do solo de 1,2 a 1,6 g cm-3, com resistência à penetração de 1.4 MPa. O teor de água de 70 % da capacidade de campo proporcionou maior comprimento radicular em todas as densidades estudadas.  O aumento no comprimento radicular resultou em maior volume radicular. Concluiu-se também que os efeitos da compactação do solo prejudicaram o diâmetro radicular, principalmente na camada compactada. A temperatura do solo afetou o crescimento radicular, principalmente nas camadas com densidade elevada. UNITERMOS: compactação do solo, teor de água, densidade do solo, resistência à penetração, crescimento radicular.


2015 ◽  
Vol 29 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Michel Keisuke Sato ◽  
Herdjania Veras de Lima ◽  
Pedro Daniel de Oliveira ◽  
Sueli Rodrigues

Abstract The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.


2004 ◽  
Vol 52 (3) ◽  
pp. 211-220 ◽  
Author(s):  
P. László ◽  
C. Gyuricza

Within the framework of cooperation between Szent István University and the Vienna University of Agricultural Sciences, a soil cultivation experiment in a maize (Zea mays L.) monoculture was set up for the first time in Austria near Pyhra (Lower Austria) in 1996. A study was conducted to evaluate the effects of ridge tillage (RT) in comparison with conventional mouldboard ploughing in autumn (CT) and no-tillage (NT) on the penetration resistance (PR), soil bulk density (BD) and porosity (P) of sandy loam soil (Typic Agriudoll). Analyses were made for each treatment and for different parts of the ridge (top and side of the ridge, and interrow) in 1998, 2000 and 2002. The average PR and BD values were greatest in the no-tillage plot, being 3.42 MPa and 1.56 g·cm-3, respectively. After six years, ridge tillage resulted in lower penetration resistance and bulk density values in the upper 20 cm than conventional tillage and no-tillage. Ridge tillage appears capable of reducing compaction in this soil. It can be concluded from the results that ridge tillage is capable of maintaining and improving favourable physical conditions in the soil.


Irriga ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Charles Duruoha ◽  
Cassio Roberto Piffer ◽  
Paulo Roberto Arbex Silva

ROOT VOLUME AND DRY MATTER OF PEANUT PLANTS AS A FUNCTION OF SOIL BULK DENSITY AND SOIL WATER STRESS.  Charles Duruoha1; Cassio Roberto Piffer2; Paulo Roberto Arbex Silva21United States Department of Agriculture (USDA-ARS), National Soil Dynamics Laboratory, Auburn, AL - U.S.A., [email protected] de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, São Paulo  1 ABSTRACT Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3x2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth. KEY WORDS: Soil compaction; water stress; soil bunk; root volume; root growth  DURUOHA, C.; PIFFER, C. R.; SILVA, P. R. A. MATÉRIA SECA E VOLUME DE RAÍZES DE PLANTAS DE AMENDOIMEM FUNÇÃO DADENSIDADEE DO DÉFICIT DE ÁGUA DO SOLO.  2 RESUMO O conceito de compactação do solo não inclui apenas a redução do solo, mas também no resultante decréscimo em permeabilidade para trocas gasosas e água, assim como alterações em relação térmica e aumento na resistência mecânica do solo.  Um solo compactado pode restringir o desenvolvimento radicular normal da planta. Simulações de camadas de restrição de raízes em casa de vegetação são necessárias para desenvolver mecanismos que reduzam problemas de compactação dos solos. A seleção de três diferentes densidades de solo, baseadas no ensaio de Proctor, é também um fator importante para determinar qual densidade restringe a penetração da raiz. O presente trabalho foi realizado para avaliar o volume e matéria seca radicular em função da densidade do solo e da disponibilidade hídrica em amendoim (Arachis hypogea). Foram utilizados três níveis de densidade do solo (1,2; 1,4 e1,6 gcm-3) e dois níveis de teor de água no solo (70 e 90% da capacidade de campo). Os tratamentos foram inteiramente casualizados com quatro repetições em arranjo fatorial (3 x 2). Os resultados sugerem que a produção de amendoim geralmente responde favoravelmente à compactação subsuperficial, na presença de impedância mecânica elevada. Este resultado claramente indica a habilidade da raiz em penetrar na camada de impedimento com menor densidade. O volume radicular não foi afetado pelo aumento da densidade do solo e esta impedância mecânica aumentou o volume radicular quando as raízes penetraram em barreiras com menor compactação. O crescimento radicular abaixo da camada compactada foi afetado pela barreira imposta. Esta compactação impossibilitou que as raízes crescessem mesmo na presença de teor de água ótimo. O teor de água de 70 % da capacidade de campo (P<0,0001) proporcionou maior proliferação radicular. Foi observado que a impedância mecânica não é um bom indicador para a avaliação da restrição de crescimento radicular no trabalho em casa de vegetação. UNITERMOS: compactação do solo, capacidade de campo e crescimento radicular.


2010 ◽  
Vol 34 (1) ◽  
pp. 211-2178 ◽  
Author(s):  
Fabiana de Souza Pereira ◽  
Itamar Andrioli ◽  
Amauri Nelson Beutler ◽  
Cinara Xavier de Almeida ◽  
Faber de Souza Pereira

The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.


2021 ◽  
pp. 126389
Author(s):  
Marco Bittelli ◽  
Fausto Tomei ◽  
Anbazhagan P. ◽  
Raghuveer Rao Pallapati ◽  
Puskar Mahajan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document