scholarly journals Critical soil bulk density for soybean growth in Oxisols

2015 ◽  
Vol 29 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Michel Keisuke Sato ◽  
Herdjania Veras de Lima ◽  
Pedro Daniel de Oliveira ◽  
Sueli Rodrigues

Abstract The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

Author(s):  
Pedro D. de Oliveira ◽  
Michel K. Sato ◽  
Sueli Rodrigues ◽  
Herdjania V. de Lima

ABSTRACT This study tested the hypothesis that the limiting values of S-index, proposed in the literature can not be used to determine the degradation condition of soils under soybean cultivation in the state of Pará, Brazil. The objective was to determine limiting values of S-index using soil physical attributes and validate it with soybean root growth, in soils with different textural classes. For the experimental design, the following treatments were established: five compaction levels for sandy loam and sandy clay loam soils and three levels for clayey and very clayey soils. The following physical parameters were analysed: particle-size distribution, soil bulk density, critical soil bulk density, degree of compaction, soil-water retention curve, S-index and relative root length of soybean. The limiting values of S-index varied according to soil textural class and were equal to 0.037, 0.020 and 0.056 for sandy loam, sandy clay loam and clay, respectively. The S-index does not apply to soils with clay content > 71%, because it does not vary with the degree of compaction of the soil or the root growth of the evaluated crop.


2018 ◽  
Vol 53 (4) ◽  
pp. 464-477 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Renato Levien ◽  
Carlos Ricardo Trein ◽  
João de Andrade Bonetti ◽  
Henrique Debiasi

Abstract: The objective of this work was to determine whether compaction by tractor traffic in areas managed under controlled traffic can be limiting to corn crop, under different tillage systems, in a Typic Paleudult of medium texture. Two experiments were carried out, one in the field over two crop seasons and another in a greenhouse. The treatments consisted of minimum tillage with chiselling; no-tillage subjected to one, three, or six passes of a tractor weighing 3.8 Mg; and an area without traffic. Evaluations were performed for soil physico-hydraulic parameters (soil bulk density, penetration resistance, and water retention curve), root and shoot growth, and grain yield. The agricultural traffic increased bulk density, soil penetration resistance, and water content at field capacity. The highest values for soil penetration resistance (1,600 kPa) and bulk density (1.67 g cm-3) in the trafficked soil were not limiting to corn development and increased grain yield for both crop seasons. Tractor traffic of up to six passes is beneficial to corn cultivation, and it increases water availability and corn grain yield.


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2016 ◽  
Vol 36 (3) ◽  
pp. 449-459 ◽  
Author(s):  
Wininton M. da Silva ◽  
Aloísio Bianchini ◽  
Cesar A. da Cunha

ABSTRACT This study aimed to describe the behavior of models for adjusting data of soil penetration resistance for variations in soil moisture and soil bulk density. The study was carried out in Lucas do Rio Verde, MT, Brazil in a typic dystrophic red-yellow Latosol (Oxisol) containing 0.366 kg kg−1 of clay. Soil penetration resistance measurements were conducted in the soil moistures of 0.33 kg kg−1, 0.28 kg kg−1, 0.25 kg kg−1 and 0.22 kg kg−1. Soil penetration resistance behavior due to variations in soil moisture and soil bulk density was assessed by estimating the soil resistance values by non-linear models. There was an increase of the soil penetration resistance values as soil was losing moisture. For the same edaphic condition studied, small differences in the data of soil bulk density affect differently the response of soil resistance as a function of moisture. Both soil bulk density and soil moisture are essential attributes to explain the variations in soil penetration resistance in the field. The good representation of the critical soil bulk density curve as a limiting compression indicator requires the proper choice of the restrictive soil resistance value for each crop.


Bragantia ◽  
2014 ◽  
Vol 73 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Daniel Dias Valadão Junior ◽  
Aloísio Biachini ◽  
Franciele Caroline Assis Valadão ◽  
Rodrigo Pengo Rosa

This study aimed to evaluate the effect of penetration rate and the size of the cone base on the resistance to penetration under different soil moistures and soil bulk density. The experimental design was completely randomized in a 4x2x2x2 factorial arrangement, with the factors, soil bulk density of 1.0; 1.2; 1.4 and 1.6 Mg m-3, soil moisture at the evaluation of 0.16 and 0.22 kg kg-1, penetration rates of 0.166 and 30 mm s-1 and areas of the cone base of 10.98 and 129.28 mm² resulting in 32 treatments with 8 replicates. To ensure greater uniformity and similarity to field conditions, samples passed through cycles of wetting and drying. Only the interaction of the four factors was not significant. Resistance values varied with the density of the soil, regardless of moisture and penetration rate. Soil penetration resistance was influenced by the size of the cone base, with higher values for the smallest base independent of moisture and soil bulk density. The relationship between resistance to penetration and moisture is not always linear, once it is influenced by soil bulk density. Reduction in the area of the cone leads to an increase in the soil resistance to penetration.


Author(s):  
Nuhad S. S. AL- Wali ◽  
Kawthar A. AL- Mosawi

This research has been conducted to study the effect of Conocarpus trees and their roots on some of soilphysical properties. The soil physical properties are moisture content , bulk density , total porosity , mean weight diameter (dry sieveing) and soil penetration resistance . Some soil samples are collected from two locations :the first location is Agric. College research, Garmat Ali, stations , Basra university , and the second location isZuwber province farm . The soil texture of the first location is silty clay which is classified as fine clay mixed Calcarioushy perthermictypictorrifluvent, while the soil texture of  the second location is sandy loam. This soil is classified with in species Entisol and under species psamments and high group , underhigh group and family (Typictorripsamments, Calcarious Mixed Hyperthermic).  The soil samples are collected from two soil depths( 0 – 30 and 30 – 60) from both locations are planted with Conocarpus trees, their ages ranged between 4 to 5 years . The trees height is 2.5 – 3.0 m . Another soil samples are also collected from unplanted soil  with Conocarpus trees. The results reveated that the silty clay soil is significantly surpassed the sandy loam soil in moisture content and mean weight diameter by a percentage of 68.76% and 32.91% respectively . Whereas, the bulk density and soil penetration resistance decreased , while the total porosity of the silty clay soil as compared with sandy loam soil .For unplanted soil, moisture content, the bulk density and the soil penetration resistance are increased as compared with planted soil . The soil depth (30 – 60)cm is surpassed soil depth of ( 0- 30)cm in giving higher values of moisture content andbulk density whereas it does not significantly affect the mean weight diameter and  soil penetration resistance .


2013 ◽  
Vol 59 (No. 7) ◽  
pp. 295-302 ◽  
Author(s):  
B. Ji ◽  
Y. Zhao ◽  
X. Mu ◽  
K. Liu ◽  
C. Li

Subsoil compaction can result in unfavourable soil physical conditions and hinder the root growth of maize. The effects of deep tillage and conventional tillage on soil physical properties and root growth of maize were studied during 2010–2011 at two sites (loam at Hebi and clay at Luohe) in central China. The results showed that soil penetration resistance, bulk density, water content and root length density were significantly affected by tillage, soil depth and year. Deep tillage had lower penetration resistance and lower soil bulk density, but higher soil water content than conventional tillage across years and depths. Averaged over the whole soil profile, deep tillage not only significantly decreased penetration resistance and soil bulk density, but significantly increased soil water content and root length density on loam, while deep tillage only significantly increased the root length density on clay. We conclude that deep tillage on the loam is more suitable for the root growth of summer maize.


2019 ◽  
Vol 49 (2) ◽  
pp. 164-178 ◽  
Author(s):  
Eric R. Labelle ◽  
Benjamin J. Poltorak ◽  
Dirk Jaeger

Forest soils often exhibit low bearing capacities and as a result are often incapable of withstanding high axle loads. In New Brunswick, Canada, five different brush amounts (0, 5, 10, 15, and 20 kg·m–2) were applied as brush mats on machine operating trails during a cut-to-length harvesting operation in a softwood stand to analyze soil disturbance as a result of off-road forest harvesting machine traffic. Soil absolute and relative bulk density and soil penetration resistance measurements were completed below the varying brush mats both before and after forwarding. The mean differences between pre- and post-impact absolute soil dry bulk density values recorded on track areas were 0.24 g·cm–3 for 5–20 kg·m–2 of brush and 0.33 g·cm–3 for 0 kg·m–2 of brush. On average, 40.5%, 17.9%, 14.3%, 15.5%, and 3.6% of all post-forwarding measurements exceeded the threshold for growth-impeding soil bulk density (80% standard Proctor density) for 0, 5, 10, 15 and 20 kg·m–2 of brush, respectively. Soil penetration values >3.0 MPa represented 23.7%, 15.0%, 9.4%, 4.6%, and 0.7% of all post-forwarding test plots with 0, 5, 10, 15, and 20 kg·m–2 of brush, respectively. The results suggest that softwood brush mats of 10 to 20 kg·m–2 placed on machine operating trails play a considerable role in reducing forwarder-induced soil compaction and penetration resistance.


Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 391 ◽  
Author(s):  
C Henderson ◽  
A Levett ◽  
D Lisle

Quantitative models to predict the effects of soil compaction on wheat yields are being developed for the northern sandplains of Western Australia. An understanding of the relationships between soil water content (W), bulk density (p), compactibility and soil penetration resistance (P) is required. Thirteen subsoils from W.A. sandplain soils were tested for compactibility. As the amounts of very coarse sand or clay in the soil increased, the maximum density (�max.) achieved with a standard compactive effort also increased, while the critical soil water content (Wcrit,.) for maximum compactibility declined. The effects of p and W on P were investigated for five of the soils. The value of P was only slightly affected as W was reduced to less than 70% of the field capacity water content. As the soils were dried further, P increased exponentially. At all water contents, an increase in p was found to markedly increase P. Particle size distribution could be used to predict �max. and Wcrit., but could not be related to the effects of changes in p and W on P. The implications for the measurement and effects of soil compaction in the field are discussed.


Sign in / Sign up

Export Citation Format

Share Document