scholarly journals Determination and occurrence of bisphenol A, bisphenol A diglycidyl ether, and bisphenol F diglycidyl ether, including their derivatives, in canned foodstuffs’ from the Czech retail market

2008 ◽  
Vol 25 (No. 4) ◽  
pp. 221-229 ◽  
Author(s):  
J. Poustka ◽  
L. Dunovská ◽  
J. Hajšlová ◽  
K. Holadová ◽  
I. Poustková

A several-year survey (2000–2006) documents a continuing occurrence of bisphenol A (BPA), bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE), including their derivatives, migrating from packaging into food. A wide range of bisphenols levels (from traces up to hundreds µg/kg) in canned foodstuffs available at the Czech retail market was found. An analytical procedure suitable for routine monitoring of bisphenols in various matrices was validated. Crude extracts (obtained by dichloromethane extraction in ultrasonic bath) were purified by gel permeation chromatography (GPC), identification/quantification was carried out by HPLC/FLD method. Optimised procedure allowed to measure trace levels of the target analytes (LODs – 3 µg/kg) with good repeatability (RSDs – 3% at level 100 µg/kg) and recoveries exceeding 75%.

2015 ◽  
Vol 79 ◽  
pp. 68-78 ◽  
Author(s):  
Rachael F. Lane ◽  
Craig D. Adams ◽  
Stephen J. Randtke ◽  
Ray E. Carter

2004 ◽  
Vol 22 (SI - Chem. Reactions in Foods V) ◽  
pp. S272-S275
Author(s):  
I. Poustková ◽  
J. Dobiáš ◽  
J. Poustka ◽  
M. Voldřich

Varnishes used as the inner coatings of food cans are often based on epoxy resins or vinylic organosols. The epoxy resins can be produced from bisphenol A (BPA) and bisphenol F (BPF) and they also contain bisphenol A diglycidyl ether (BADGE) of bisphenol F diglycidyl ether (BFDGE) as stabilising components. These compounds may break down during storage and also by influence of food simulants. The stability of BADGE and BFDGE was studied using reverse-phase gradient high performance liquid chromatography (RP-HPLC) with fluorescence detection (FLD). Four experiments were compared: (i) BPA solution at the concentration 3 μg/ml of each food simulant, (ii) BADGE solution at the concentration 3 μg/ml of each food simulant, (iii) BFDGE solution at the concentration 3 μg/ml of each food simulant and (iv) mixture of all bisphenols solution at the concentration 3 μg/ml of each food simulant. Distilled water, 10% ethanol, 95% ethanol and 3% acetic acid were used as food simulants. It was observed that BPA, BADGE and BFDGE were most stabile in 95% ethanol and least stabile in 3% acetic acid. Creation of hydroxy and chlorohydroxy derivatives was in each food simulant different so it cannot be predicted.


2008 ◽  
Vol 46 (5) ◽  
pp. 1674-1680 ◽  
Author(s):  
Ana G. Cabado ◽  
Susana Aldea ◽  
Corina Porro ◽  
Gonzalo Ojea ◽  
Jorge Lago ◽  
...  

2011 ◽  
Vol 21 (No. 3) ◽  
pp. 85-90 ◽  
Author(s):  
I. Jordáková ◽  
J. Dobiáš ◽  
M. Voldřich ◽  
J. Postka

Varnishes used for the inner coatings of food cans are mostly based on epoxy resins or vinylic organosols. The epoxy resins are produced from bisphenol A and bisphenol F and they also contain BADGE or BFDGE as stabilising components. A simple method for the quantitative determination of bisphenol A (BPA), bisphenol F (BPF), bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) migrated from food packaging materials was optimised. The can sample was extracted with acetonitrile or with food simulants (distilled water, 3% acetic acid and 10% ethanol) and the extract obtained was analysed by gas chromatography coupled with mass spectrometric detector. The limits of detection and quantification ranged between 0.15&ndash;0.86 and 0.51&ndash;2.77 &micro;g/dm<sup>2</sup>, respectively. The migrating levels of bisphenols found in various can samples were for BPA and for BADGE in the range from 0.63 &times; 10<sup>&ndash;3</sup> to 0.34 mg/dm<sup>2</sup>, and from 1.49 &times; 10<sup>&ndash;3</sup> to 3.67 mg/dm<sup>2</sup>, respectively. BPF and BFDGE were practically not detected in the can samples. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document