food simulants
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 71)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 60 (2) ◽  
Author(s):  
Heliton Augusto Wiggers ◽  
Margani Taise Fin ◽  
Najeh Maissar Khalil ◽  
Rubiana Mara Mainardes

Research background. Gallic acid is a polyphenol presenting antioxidant and antitumor activities, however its use as a nutraceutical or drug is hindered by its low bioavailability. Zein is a natural protein found in corn and has been applied as nanoparticle for drug carrier. In this study, zein nanoparticles were obtained and stabilized with polyethylene glycol (PEG) as gallic acid carriers. Experimental approach. Nanoparticles were obtained by the liquid-liquid method and characterized in terms of mean size, polydispersity index, zeta potential, morphology, solid-state interactions, and encapsulation efficiency/drug loading. The stability of nanoparticles was evaluated in simulated gastrointestinal fluids and food simulants, and the antioxidant activity was determined by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Results and conclusions. Zein nanoparticles containing gallic acid were obtained and stabilized only in the presence of PEG. The optimal conditions originated nanoparticles with mean size <200 nm, low polydispersity index (<0.25) and negative zeta potential (20 mV). The gallic acid encapsulation efficiency was about 40 %, drug loading about 5 %, and the compound was encapsulated in an amorphous state. FTIR did not identify chemical interactions after gallic acid nanoencapsulation. Zein nanoparticles were more susceptible to release the gallic acid in gastric than intestinal simulated medium, however more than 50 % of drug content was protected from premature release. In food simulants, the gallic acid release from nanoparticles was prolonged and sustained. Moreover, the nanoencapsulation did not reduce the antioxidant activity of gallic acid. Novelty and scientific contribution. The results show the importance of PEG on the formation and properties of zein nanoparticles obtained by the liquid-liquid dispersion method. This study indicates PEG-stabilized zein nanoparticles are potential carriers for gallic acid delivery by the oral route to take advantage of its antioxidant properties and be applied both in the pharmaceutical and food industry.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7140
Author(s):  
Jingwen Chen ◽  
Yinxuan Li ◽  
Wenzheng Shi ◽  
Hui Zheng ◽  
Li Wang ◽  
...  

This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion complex (β-CD-CI/β-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing β-CD-CI or β-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared β-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing β-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums.


Author(s):  
Jazmín Osorio ◽  
Margarita Aznar ◽  
Cristina Nerín ◽  
Christopher Elliott ◽  
Olivier Chevallier

Abstract Biopolymers based on polylactic acid (PLA) and starch have numerous advantages, such as coming from renewable sources or being compostable, though they can have deficiencies in mechanical properties, and for this reason, polyester resins are occasionally added to them in order to improve their properties. In this work, migration from a PLA sample and from another starch-based biopolymer to three different food simulants was studied. Attention was focused on the determination of oligomers. The analysis was first performed by ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF–MS), which allowed the identification of the oligomers present in migration. Then, the samples were analyzed by two ambient desorption/ionization techniques directly coupled to mass spectrometry (ADI), direct analysis in real-time coupled to standardized voltage and pressure (DART-MS) and atmospheric pressure solids analysis probe (ASAP-MS). These methodologies were able to detect simultaneously the main oligomers migrants and their adducts in a very rapid and effective way. Nineteen different polyester oligomers, fourteen linear and five cyclic, composed of different combinations of adipic acid [AA], propylene glycol [PG], dipropylene glycol [DPG], 2,2-dibutyl-1,3-propanediol [DBPG], or isobutanol [i-BuOH] were detected in migration samples from PLA. In migration samples from starch-based biopolymer, fourteen oligomers from poly(butylene adipate co-terephthalate) polyester (PBAT) were identified, twelve cyclic and two linear. The results from ADI techniques showed that they are a very promising alternative tool to assess the safety and legal compliance of food packaging materials. Graphical abstract


2021 ◽  
pp. 110904
Author(s):  
Lijing Lu ◽  
Chang Cheng ◽  
Li Xu ◽  
Liao Pan ◽  
Hai Feng Xia ◽  
...  
Keyword(s):  

2021 ◽  
Vol 349 ◽  
pp. 129140
Author(s):  
Renato Queiroz Assis ◽  
Carlos Henrique Pagno ◽  
Liana Stoll ◽  
Polliana D'Angelo Rios ◽  
Alessandro de Oliveira Rios ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3898
Author(s):  
Surakshi Wimangika Rajapaksha ◽  
Naoto Shimizu

Antioxidant polyphenols in black tea residue are an underused source of bioactive compounds. Microencapsulation can turn them into a valuable functional ingredient for different food applications. This study investigated the potential of using spent black tea extract (SBT) as an active ingredient in food packaging. Free or microencapsulated forms of SBT, using a pectin–sodium caseinate mixture as a wall material, were incorporated in a cassava starch matrix and films developed by casting. The effect of incorporating SBT at different polyphenol contents (0.17% and 0.34%) on the structural, physical, and antioxidant properties of the films, the migration of active compounds into different food simulants and their performance at preventing lipid oxidation were evaluated. The results showed that adding free SBT modified the film structure by forming hydrogen bonds with starch, creating a less elastic film with antioxidant activity (173 and 587 µg(GAE)/g film). Incorporating microencapsulated SBT improved the mechanical properties of active films and preserved their antioxidant activity (276 and 627 µg(GAE)/g film). Encapsulates significantly enhanced the release of antioxidant polyphenols into both aqueous and fatty food simulants. Both types of active film exhibited better barrier properties against UV light and water vapour than the control starch film and delayed lipid oxidation up to 35 d. This study revealed that starch film incorporating microencapsulated SBT can be used as a functional food packaging to protect fatty foods from oxidation.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1925
Author(s):  
Freddys R. Beltrán ◽  
Marina P. Arrieta ◽  
Diego Elena Antón ◽  
Antonio A. Lozano-Pérez ◽  
José L. Cenis ◽  
...  

The main objective of the present research is to study the effect of the incorporation of low amounts of silk fibroin nanoparticles (SFNs) and yerba mate nanoparticles (YMNs) on the migration phenomenon into ethanolic food simulants as well as on the disintegrability under composting conditions of mechanically recycled polylactic acid (PLA). Recycled PLA was obtained under simulated recycling conditions by melt processing virgin PLA into films and further subjecting them to an accelerated aging process, which involved photochemical, thermal, and hydrothermal aging steps followed by an intense washing step. SFNs were extracted from Bombyx mori cocoons and YMNs from yerba mate waste. Then, recycled PLA was melted, reprocessed, and reinforced with either 1%wt. of SFNs or YMNs, by melt extrusion, and further processed into films by compression molding. The obtained nanocomposites were exposed to ethanolic food simulants (ethanol 10% v/v, simulant A and ethanol 50% v/v, simulant D1) and the structural, thermal, and mechanical properties were studied before and after the exposure to the food simulants. The migration levels in both food simulants were below the overall migration limits required for food contact materials. The materials were disintegrated under simulated composting conditions at the laboratory scale level and it was observed that the nanoparticles delayed the disintegration rate of the recycled PLA matrix, but nanocomposites were fully disintegrated in less than one month.


Food Control ◽  
2021 ◽  
pp. 108354
Author(s):  
Csaba Kirchkeszner ◽  
Noémi Petrovics ◽  
Tamás Tábi ◽  
Norbert Magyar ◽  
József Kovács ◽  
...  

2021 ◽  
pp. 106955
Author(s):  
Silvina P. Agustinelli ◽  
Emiliano M. Ciannamea ◽  
Roxana A. Ruseckaite ◽  
Josefa F. Martucci

Sign in / Sign up

Export Citation Format

Share Document