scholarly journals Influences of a vermicompost application on the phosphorus transformation and microbial activity in a paddy soil

2020 ◽  
Vol 15 (No. 4) ◽  
pp. 199-210
Author(s):  
Feng Zhang ◽  
Rongping Wang ◽  
Weimin Yu ◽  
Jiawei Liang ◽  
Xinrong Liao

A pot experiment was conducted to investigate the effects of a vermicompost (VC) application on the phosphorus (P) transformation and microbial activity in a paddy soil. Changes in the following P forms were investigated: resin-P, concentrated HCl extracted inorganic (C.HCl-P<sub>i</sub>) and organic P (C.HCl-P<sub>o</sub>), diluted HCl extracted inorganic P (D.HCl-P<sub>i</sub>), NaHCO<sub>3</sub> extracted inorganic (NaHCO<sub>3</sub>-P<sub>i</sub>) and organic P (NaHCO<sub>3</sub>-P<sub>o</sub>), NaOH extracted inorganic (NaOH-P<sub>i</sub>) and organic P (NaOH-P<sub>o</sub>), and residual P. The results showed that the vermicompost application significantly (P &lt; 0.05) affected the pH, redox potential (Eh), water soluble Fe(II), HCl-extractable Fe(II), microbial biomass carbon (MBC), microbial biomass P (MBP), MBC/MBP ratio, and acid phosphatase activity (APA) of the paddy soil. In particular, the HCl-extractable Fe(II) increased by 25–56% with the vermicompost application when compared to the control (CK). With the exception of C.HCl-P<sub>i</sub>, the vermicompost application greatly increased the contents of the various P forms in the soil. In particular, the labile P (resin-P, NaHCO<sub>3</sub>-P<sub>i</sub>, and NaHCO<sub>3</sub>-P<sub>o</sub>) and moderately stable P (NaOH-P<sub>i</sub> and NaOH-P<sub>o</sub>) were significantly (P &lt; 0.01) increased. The correlation analyses showed that NaHCO<sub>3</sub>-P<sub>i</sub> was significantly and positively related to the MBC, MBP, and APA, while NaHCO<sub>3</sub>-P<sub>o</sub> was significantly and negatively related to the MBC, MBP, and APA. Both NaOH-P<sub>i</sub> and C.HCl-P<sub>i</sub> were significantly and negatively related to the APA. Both NaOH-P<sub>o</sub> and C.HCl-P<sub>o</sub> were significantly and positively related to the MBP, while NaOH-P<sub>i</sub> was significantly and negatively related to the MBP. These results indicated that a vermicompost application could effectively enhance the dissolution and reduction of Fe and the consequent mobilisation of NaOH-P<sub>i</sub>. In addition, the vermicompost application significantly (P &lt; 0.01) increased the APA and effectively mobilised the NaOH-P<sub>o</sub>.

1999 ◽  
Vol 79 (1) ◽  
pp. 73-84 ◽  
Author(s):  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
G. Wen ◽  
R. P. Zentner ◽  
J. Schoenau ◽  
...  

Measurements of seasonal changes in soil biochemical attributes can provide valuable information on how crop management and weather variables influence soil quality. We sampled soil from the 0- to 7.5-cm depth of two long-term crop rotations [continuous wheat (Cont W) and both phases of fallow-wheat (F–W)] at Swift Current, Saskatchewan, from early May to mid-October, 11 times in 1995 and 9 times in 1996. The soil is a silt loam, Orthic Brown Chernozem with pH 6.0, in dilute CaCl2. We monitored changes in organic C (OC) and total N (TN), microbial biomass C (MBC), light fraction C and N (LFC and LFN), mineralizable C (Cmin) and N (Nmin), and water-soluble organic C (WSOC). All biochemical attributes, except MBC, showed higher values for Cont W than for F–W, reflecting the historically higher crop residue inputs, less frequent tillage, and drier conditions of Cont W. Based on the seasonal mean values for 1996, we concluded that, after 29 yr, F–W has degraded soil organic C and total N by about 15% compared to Cont W. In the same period it has degraded the labile attributes, except MBC, much more. For example, WSOC is degraded by 22%, Cmin and Nmin by 45% and LFC and LFN by 60–75%. Organic C and TN were constant during the season because one year's C and N inputs are small compared to the total soil C or N. All the labile attributes varied markedly throughout the seasons. We explained most of the seasonal variability in soil biochemical attributes in terms of C and N inputs from crop residues and rhizodeposition, and the influences of soil moisture, precipitation and temperature. Using multiple regression, we related the biochemical attributes to soil moisture and the weather variables, accounting for 20% of the variability in MBC, 27% of that of Nmin, 29% for LFC, 52% for Cmin, and 66% for WSOC. In all cases the biochemical attributes were negatively related to precipitation, soil moisture, temperature and their interactions. We interpreted this to mean that conditions favouring decomposition of organic matter in situ result in decreases in these attributes when they are measured subsequently under laboratory conditions. We concluded that when assessing changes in OC or TN over years, measurements can be made at any time during a year. However, if assessing changes in the labile soil attributes, several measurements should be made during a season or, measurements be made near the same time each year. Key words: Microbial biomass, carbon, nitrogen, mineralization, water-soluble-C, light fraction, weather variables


2000 ◽  
Vol 80 (4) ◽  
pp. 561-566 ◽  
Author(s):  
P. Qian ◽  
J. J. Schoenau

Limited information exists as to the short-term effect of liquid swine manure on P distribution in soil. To address this issue, forms and distribution of inorganic P (Pi) and organic P (Po) at 2 wk and 16 wk after manure addition were investigated through a sequential extraction procedure. An Orthic Black Chernozem was sampled from a field research plot (Dixon, SK) without previous manure and urea additions. Liquid swine manure and urea were applied at rates of 0, 100 and 400 mg N kg−1, corresponding 10 and 40 mg P kg−1 from manure. Manure addition did not increase the most labile P fractions in soil. Instead the initial fate of the P from the manure was mainly to enter moderately labile and stable fractions such as calcium phosphate and organic P forms. This is consistent with observations in the field that a single application of swine effluent does not have a large impact on extractable "available" P in the soil. Further studies are needed to determine how much manure P loading is required for saturation of the "fixed pool" of P in Saskatchewan soils. Key words: Phosphorus fractions, sequential P extraction, incubation, urea, swine manure, anion exchange membrane


2020 ◽  
Vol 17 (4) ◽  
pp. e1104
Author(s):  
Adriana Montañez ◽  
Natalia Rigamonti ◽  
Silvana Vico ◽  
Carla Silva ◽  
Lucía Nuñez ◽  
...  

Aim of study: This study evaluated the effect of the application of liquid aerobic treated manure (continuous liquid composting, CLC) on physical, chemical and biological soil properties, with the objective of monitoring changes induced by soil management with CLC as a biofertilizer.Area of study: Colonia, Uruguay (lat. 34,338164 S, long. 57,222630 W).Material and methods: Soil’s chemical properties, including nitrogen mineralization potential (NMP) and 15 microbiological properties (microbial biomass carbon, MBC; mesophylic aerobic bacteria; actinobacteria; filamentus fungi; fluorescein diacetate hydrolysis; dehydrogenase; with NMP; acid and alkaline phosphatase; cellulolose degraders; P-solubilizing bacteria; nitrifying; denitrifying and free-living N-fixing microorganisms; glomalin; and soil-pathogenicity index, SPI) were evaluated in two sites with similar cropping history, with one and three years of respective CLC application.Main results: CLC application had significant effects on soil microbial biomass (p<0.05), soil enzyme (p<0.1) and functional groups activity (p<0.05). SPI decreased in both sites with CLC application. No significant variations were detected for the chemical variables, with the exception of NMP, which was significantly high (p<0.05) in soil treated with CLC at both sites.Research highlights: The improved biological soil properties analyzed (MBC, soil enzyme activities and SPI, together with NMP) emerged as reasonable indicators to assess and monitor the effects of CLC application.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
Lj. ŠANTRIC ◽  
Lj. RADIVOJEVIC ◽  
J. GAJIC-UMILJENDIC ◽  
M. SARIC-KRSMANOVIC ◽  
R. ÐUROVIC-PEJCEV

ABSTRACT: The effects of the nicosulfuron and glyphosate herbicides on microbial activity in two soils with different physical and chemical properties (loam and sand) were investigated. Nicosulfuron was applied at the rates of 0.3, 0.6, 3.0 and 30.0 mg kg-1 soil and glyphosate at 32.6, 65.2, 326.0 and 3260.0 mg kg-1 soil in the laboratory. Changes in dehydrogenase and urease activity, as well as in microbial biomass carbon, were examined. Samples for the analysis were collected at 3, 7, 14, 30 and 45 days after herbicide application. The results showed that the effects of nicosulfuron and glyphosate depended on treatment rate, duration of activity, test parameters and soil types. In general, application of the herbicides significantly increased the activity of dehydrogenase and urease. Nicosulfuron had a stimulating activity on microbial biomass carbon in loam, while both herbicides demonstrated negative effects on the parameter in the sandy soil.


2020 ◽  
Author(s):  
Qingfang Bi ◽  
Xianyong Lin ◽  
Wolfgang Wanek ◽  
Shasha Zhang ◽  
Alberto Canarini ◽  
...  

&lt;p&gt;Paddy soil as a major component of cropland, plays an important role in the global carbon (C) cycle and favors carbon sequestration especially in southern China. Soil microorganisms are central to the conversion of organic matter into SOC, yet the mechanisms underlying the paddy management at long time scales remain largely unknown, including microbial enzyme and functional potential kinetics, microbial growth and turnover. Here, using observations from a 2000-year-old paddy chronosequence since reclamation from tidal wetland at two different soil depths (0-20 cm and 20-50 cm) in the Yangtze River Delta, China, we show how paddy soil C sequestration is driven by the relationship between short-term responses in microbial physiology and long-term changes in biogeochemical soil properties. The samples were analyzed for nutrient pools, microbial biomass and growth, microbial activity and community composition, functional gene abundances, as well as microbially mediated nitrogen (N) cycling rate to determine how these microbial functionalities and processes affect microbial carbon use efficiency (CUE), an important indicator for microbial C sequestration. Across multiple time-scales ranging from decades to millennia, SOC in topsoil was increased by 65% during the first 50 years and reached the steady-state condition until 700-year, then was largely accumulated by 169% and 125% in 1000- and 2000-year, respectively, while C loss appeared in subsoil after 700 years of paddy cultivation. For topsoil and subsoil, microbial CUE reached to the highest values in 1000- and 700-year (0.46 and 0.36, respectively, while only 0.20 in the tidal wetland), along with microbial growth which both increased 5.2- and 3.3-fold in 1000-year, respectively. We found the similar increasing trends between microbial CUE and soil C:P and N:P ratios, the reduction of N limitation and functional potentials including N- and P-cycling, C degradation, C-fixation (&lt;em&gt;acsA&lt;/em&gt; gene), microbial community homogenization and microbial biomass across soil chronosequence in topsoil. Moreover, the structural equation model revealed that with longer paddy management, the decline in soil pH had positive effects on microbial functional potentials and microbial biomass carbon. The enhanced functional potentials directly positively affected microbial growth, and thereby on microbial biomass carbon. Finally, the prolonged paddy cultivation increased SOC content via its direct positive effect and indirect positive influence on microbial biomass carbon. We conclude that longer paddy management captures the cumulative microbial anabolism on SOC sequestration in the plough layer, with the shifts in abiotic and biotic conditions towards increased nutrient availability and homogenous microbial community with higher functional potentials.&lt;/p&gt;


1989 ◽  
Vol 69 (4) ◽  
pp. 889-894 ◽  
Author(s):  
V. V. S. R. GUPTA ◽  
J. J. GERMIDA

Air-drying decreased (> 80%) microbial activity, microbial biomass carbon (MB-C) and sulfur (MB-S) levels of both native and cultivated soils. This resulted in a flush (~ 4 μg g−1) in the 0.01 M CaCl2 extractable SO4-S. Rewetting soils restored microbial activity and biomass contents to their original levels, but this led to immobilization of the SO4-S. Restoration of the MB-S levels was slower than MB-C levels. Thus, during drying and rewetting cycles, the MB-S pool acts as both a source and sink for the SO4-S pool in soil. Key words: Microbial activity, microbial biomass sulfur, extractable sulfate sulfur


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1174
Author(s):  
Martin Brtnicky ◽  
Tereza Hammerschmiedt ◽  
Jakub Elbl ◽  
Antonin Kintl ◽  
Lucia Skulcova ◽  
...  

Different types of soil respond variably to biochar amendment. Soil structure and fertility are properties which strongly affect the impacts of biochar on soil fertility and microbial activity. A pot experiment with lettuce was conducted to verify whether biochar amendment is more beneficial in sandy soil than in clay soil. The nutrient content (carbon and nitrogen), microbial biomass carbon, soil respiration, metabolic quotient, and plant biomass yield were determined. The treatments were prepared by mixing silty clay loam (Haplic Luvisol) with a quartz sand in ratios of 0%, 20%, 40%, 60%, 80%, and 100% of sand; the same six treatments were prepared and amended with biochar (12 treatments in total). Soil carbon and nitrogen, microbial biomass carbon, and soil respiration were indirectly dependent on the descending sand ratio, whereas the metabolic quotient increased with the ascending sand ratio. The biochar’s effects were positive for total carbon, microbial biomass carbon, metabolic quotient, and plant biomass in the sand-rich treatments. The maximum biochar-derived benefit in crop yield was found in the 100% sand + biochar treatment, which exhibited 24-fold (AGB) and 11-fold (root biomass) increases compared to the unamended treatment. The biochar application on coarse soil types with lower fertility was proven to be favorable.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 803
Author(s):  
Wei Dai ◽  
Jun Wang ◽  
Kaikai Fang ◽  
Luqi Cao ◽  
Zhimin Sha ◽  
...  

Soil organic carbon (SOC) and nitrogen (N) fractions greatly affect soil health and quality. This study explored the effects of wheat straw incorporation on Chinese rice paddy fields with four treatments: (1) a control (CK), (2) a mineral NPK fertilizer (NPK), (3) the moderate wheat straw (3 t ha−1) plus NPK (MSNPK), and (4) the high wheat straw (6 t ha−1) plus NPK (HSNPK). In total, 0–5, 5–10, 10–20, and 20–30 cm soil depths were sampled from paddy soil in China. Compared with the CK, the HSNPK treatment (p < 0.05) increased the C fraction content (from 13.91 to 53.78%), mainly including SOC, microbial biomass C (MBC), water-soluble organic C (WSOC), and labile organic C (LOC) in the soil profile (0–30 cm), and it also (p < 0.05) increased the soil N fraction content (from 10.70 to 55.31%) such as the soil total N (TN) at 0–10 cm depth, microbial biomass N (MBN) at 0–20 cm depth, total water-soluble N (WSTN) at 0–5 and 20–30 cm depths, and total labile N (LTN) at 0–30 cm depth. The primary components of soil LOC and LTN are MBC and MBN. Various soil C and N fractions positively correlated with each other (p < 0.05). The HSNPK treatment promoted the soil MBC, WSOC, and LOC to SOC ratios, and also promoted MBN, WSTN, and LTN to soil TN ratios at a depth of 0–20 cm. To summarize, the application of HSNPK could maintain and improve rice paddy soil quality, which leads to increased rice grain yields.


Sign in / Sign up

Export Citation Format

Share Document