scholarly journals The mechanical behaviour of new long-span hollow-core roofs based on aluminum alloy honeycomb panels

2019 ◽  
Vol 53 (3) ◽  
pp. 311-318 ◽  
Author(s):  
C. Zhao ◽  
J. Ma ◽  
S. Du
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5807
Author(s):  
Maciej Mogilski ◽  
Maciej Jabłoński ◽  
Martyna Deroszewska ◽  
Robert Saraczyn ◽  
Jan Tracz ◽  
...  

The aim of this study was to measure the energy absorbed by composite panels with carbon fiber-reinforced polymer (CFRP) skins and a 5052 aluminum alloy honeycomb core and to compare it to previous research and isotropic material—two 25 × 1.75 mm 1.0562 alloy steel tubes. The panel skins layup consisted of pre-impregnated Pyrofil TR30S 210 gsm 3K 2 × 2 twill oriented in directions 0/90 and −45/45 and having a consolidated thickness of 1 mm or 2 mm. The core consisted of a 15 mm or 20 mm honeycomb oriented along its lengthwise direction. The first test consisted of a three-point bending of specimens supported at a span of 400 mm with a 50 mm radius tubular load applicator in the middle. Second, a perimeter shear test was conducted using a 25 mm diameter punch and a 38 mm diameter hole. The results of the three-point bending test show that the energy absorbed by panels with 1 mm skins was similar to the energy absorbed by the tubes (96 J), which was better than the previously considered panels. In the case of perimeter shear, the average maximum forces for the top and bottom skin were 5.7 kN and 6.6 kN, respectively. For the panel with thicker skins (2 mm), the results were about 2 times higher.


2011 ◽  
Vol 10 ◽  
pp. 798-806 ◽  
Author(s):  
A. May ◽  
M.A. Belouchrani ◽  
A. Manaa ◽  
Y. Bouteghrine

2021 ◽  
Vol 348 ◽  
pp. 01010
Author(s):  
Amine Bendarma ◽  
Salwa EL Garouge ◽  
Hajar Akhzouz ◽  
Said Kardellass ◽  
Salim Bouslikhane ◽  
...  

The mechanical behavior of aluminum alloy under impact loading using different configurations is described. Perforation tests are referred in this work at wide ranges of specimen using several projectile shapes to analyse their effect on the ballistic curve VR-V0 (conical, hemispherical and blunt), with a diameter of 6.mm. A wide range of impact velocities from 40 to 100 m/s has been used. Experimental and numerical analysis have been carried out to predict the mechanical behaviour of the studied aluminium alloy. This analysis has been done using a high-pressure gas gun. Specimens were prepared from standard 1.0 mm and 1.5 mm thick aluminum sheets with 13x13 cm plates. The resistance and the energy absorbed by the aluminum sheets under dynamic load were obtained by measuring the initial and residual velocities of the projectiles. The experimental and numerical results are presented and compared in terms of ballistic curve VR-V0, a good correlation was observed.


Sign in / Sign up

Export Citation Format

Share Document