2016 ◽  
Vol 6 ◽  
pp. 440-446 ◽  
Author(s):  
Qiuhua Zou ◽  
Wen Xue ◽  
Jing Lin ◽  
Yijun Fu ◽  
Guoping Guan ◽  
...  

2012 ◽  
Vol 532-533 ◽  
pp. 719-723
Author(s):  
Shao Yan Hua ◽  
Yu Chi Ming ◽  
Ming Yue Ding

C-mode imaging is one of the ultrasound imaging modalities. Compared with other modalities, e.g. A-mode, B-mode, M-mode, and Doppler, C-mode is mainly developed and used in industry testing. The potential of C-mode imaging for medical application has not been fully explored. In this paper, we design one 2-d plane array transducer through using the point spread function (PSF), and apply the 2d array transducer for C-mode imaging. The simulation results show that the generated C-mode images can display the anatomic structure and the pathological changes on the biological tissue.


2018 ◽  
Vol 55 (4) ◽  
pp. 524-530
Author(s):  
Marinela Marinescu ◽  
Larisa Butu ◽  
Claudia Borda ◽  
Delicia Arsene ◽  
Mihai Butu

This study presents research regarding the calculation of the mechanical characteristics of composite polymeric materials. By using LabVIEW� software a virtual instrument was created used for monitoring in real time the process of cross-linking the composite polymeric materials. The experiments were realized based on composite materials containing epoxy/fiberglass resin of different topologies. By means of the virtual instrument and of a sensor created based on the mechanical impedance analysis, implanted in the composite material, it was determined the G shearing module of the composite material at different temperatures.


2019 ◽  
Vol 5 (2) ◽  
pp. 103-108
Author(s):  
Valentina V. Kiryushina ◽  
Yuliya Yu. Kovaleva ◽  
Petr A. Stepanov ◽  
Pavel V. Kovalenko

Polymer composite materials (PCM) are used extensively and are viewed as candidates for application in various industries, including nuclear power. Despite a variety of methods and procedures employed to investigate the mechanical characteristics of PCMs, the use of the laboratory sample mechanical test results to design and model large-sized structures is not always fully correct and reasonable. In particular, one of the problems is concerned with taking into account the scale parameter effects on the PCM strength and elastic characteristics immediately in the product. The purpose of the study is to investigate the scale effects on the mechanical characteristics of glass reinforced plastics using phenolformaldehyde and silicon-organic binders and a fabric quartz filler. Samples of four different standard sizes under GOST 25604-82 and GOST 4648-2014 were tested for three-point bending using an LFM-100 test machine to estimate the scale effect. The thicknesses of the model samples were chosen with regard for the wall thicknesses of full-scale products under development or manufactured commercially and the test machine features, and varied in the limits of 1.6 to 7.5 mm. The tests showed that strength decreased as the sample thickness was increased to 3 mm and more both at room and elevated (200 to 500 °C) temperatures, which can be described by an exponential function based on the Weibull statistical model. The values of the Weibull modulus that characterizes the extent of the scale effect on the strength of the tested materials were 4.6 to 6.7. The average bend strength in the sample thickness range of 3 mm and less does not vary notably or tends to increase slightly as the thickness is increased. This fact makes it possible to conclude that estimation of allowable stresses in a thin-wall product requires the use of test results for samples with a thickness that is equal to the product wall thickness since standard samples may yield overestimated allowable stress values and lead, accordingly, to incorrect calculations of the strength factor. The results obtained shall be taken into account when defining the allowable levels of operation for full-scale products and structures of polymer composites based on the laboratory sample strength data as well as when estimating their robustness as a characteristic of the product’s fail-safe operation.


2008 ◽  
Vol 28 (6) ◽  
pp. 691-699 ◽  
Author(s):  
Jaime Horta-Rangel ◽  
Witold Brostow ◽  
Gonzalo Martinez-Barrera ◽  
Victor M. Castaño

Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
Irini Djeran Maigre ◽  
...  

Crude bricks are composite materials manufactured with sediments and natural fibers. Natural fibers are waste materials and used in construction materials for reinforcement. Their reuse in manufacturing reinforced crude bricks is eco-friendly and improves mechanical and thermal characteristics of crude bricks. Factors such as type of fibers, percentage of fibers, length of fibers and distribution of fibers inside the bricks have significant effect on mechanical, physical and thermal properties of biobased composite materials. It can be observed by tests such as indirect tensile strength, compressive strength for mechanical characteristics, density, shrinkage, color for physical properties, thermal conductivity and resistivity for thermal properties, and inundation test for durability of crude bricks. In this study, mechanical and physical characteristics of crude bricks reinforced with palm oil fibers are investigated and effect of change in percentage and length of fibers is observed. Crude bricks of size 4*4*16 cm3 are manufactured with dredged sediments from Usumacinta River, Mexico and reinforced with palm oil fibers at laboratory scale. For this purpose, sediments and palm oil fibers characteristics were studied. Length of fibers used is 2cm and 3cm. Bricks manufacturing steps such as sediments fibers mixing, moulding, compaction and drying are elaborated. Dynamic compaction is opted for compaction of crude bricks due to energy control. Indirect tensile strength and compressive strength tests are conducted to identify the mechanical characteristics of crude bricks. Physical properties of bricks are studied through density and shrinkage. Durability of crude bricks is observed with inundation test. Thermal properties are studied with thermal conductivity and resistivity test. Distribution and orientation of fibers and fibers counting are done to observe the homogeneity of fibers inside the crude bricks. Finally, comparison between the mechanical characteristics of crude bricks manufactured with 2cm and 3cm length with control specimen was made.


2019 ◽  
Vol 394 ◽  
pp. 15-19 ◽  
Author(s):  
Irina Garkina ◽  
Alexander Danilov

Methodological principles for the development of composite materials with the desiredstructure and properties are proposed. One of the perspective directions of development ofcomposite materials by their representation as multi-purpose systems with the corresponding systemattributes is considered. The structure of quality functional for objective assessment of quality ofkinetic processes of formation of physic-mechanical characteristics of a composite is developed.The technique of synthesis of construction material based on application of lines of equal level ofquality functional is offered.


2011 ◽  
Vol 474-476 ◽  
pp. 7-10 ◽  
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Ming Zhang ◽  
Min Xian Shi ◽  
Yan Qin ◽  
...  

This paper introduced a computer simulation model for composite materials which was reinforced by spherical particles. We introduced its algorithm and visualize the model with different particle volume fraction. In order to evaluate the uniformity of the particle distribution, we estimated Particle Center Density and standard deviation of minimal sphere distance.


Sign in / Sign up

Export Citation Format

Share Document