scholarly journals The Influence of Composite Polymeric Materials Topology Over the Shearing Modulus Using Virtual Instruments

2018 ◽  
Vol 55 (4) ◽  
pp. 524-530
Author(s):  
Marinela Marinescu ◽  
Larisa Butu ◽  
Claudia Borda ◽  
Delicia Arsene ◽  
Mihai Butu

This study presents research regarding the calculation of the mechanical characteristics of composite polymeric materials. By using LabVIEW� software a virtual instrument was created used for monitoring in real time the process of cross-linking the composite polymeric materials. The experiments were realized based on composite materials containing epoxy/fiberglass resin of different topologies. By means of the virtual instrument and of a sensor created based on the mechanical impedance analysis, implanted in the composite material, it was determined the G shearing module of the composite material at different temperatures.

Author(s):  
Agnese Pujate ◽  
Gotfrīds Noviks

The aim of the work is to investigate the use of existing wood waste, the most effective method of obtaining lignin and to create composite material made from renewable natural resources. The work looked at the current wider use of wood resources - construction, energy and chemical processing. The current waste from the use of wood - lignin is investigated. And the complex and rational use of this waste without waste. Experimentally, lignin was obtained with two methods, alkali and acid, from different Latvian tree species. Experimentally obtained composite samples with different compositions - alkali / acid lignin (binder) and leafy tree ash / chips (filler). Also, composite materials are considered at different proportions, where the percentage of both binders and fillers changes. Experimental samples were pressed at different temperatures.


Author(s):  
M. Prabhakaran ◽  
C. Sivakandhan

The Word composite consisting of two or more distinct materials, having two or more distinct phases with different physical properties are noticeable different from the constituent properties. Of all composite materials the fabric type has evoked the most interest among embedded in matrix materials to form laminated composites. These have been used for centuries and today industrial innovation improved energy planning. Uncertain availability and ever increasing cost have created a greater interest in composites. The engineering importance of a composite material is that two or more distinctly different materials with dissimilar characteristics combine together to form a composite that is either superior or important in some other manner to the properties of the individual materials. Most of the composites have been created to improve combinational of mechanical characteristics such stiffness, wear resistance and mechanical properties.


2021 ◽  
Vol 1040 ◽  
pp. 124-131
Author(s):  
Ljubov Aleksandrovna Bokhoeva ◽  
I.O. Bobarika ◽  
A.B. Baldanov ◽  
Vitaly Evdokimovich Rogov ◽  
Anna S. Chermoshentseva

Due to the intensive development of composite materials and technologies for producing parts from them, they are increasingly used in various industries, including the manufacture of products with increased requirements for the characteristics of final products (strength, stiffness, minimum weight, etc.). In this regard, the authors analyzed the possibility to optimize the layered structure of a composite material in order to give it a pronounced predictable anisotropy of properties required for the final product. Thus, the influence of the orientation of the fibers of the reinforcing material in different layers of the package and the number of layers of the package on the physical and mechanical characteristics of the hypothetical product were analyzed. The problem was solved through the example of the development of a wing for a hypothetical UAV.


2016 ◽  
Vol 36 (3) ◽  
pp. 299-307
Author(s):  
Huseyin Zengin ◽  
Erdal Bayir ◽  
Gulay Zengin

Abstract This study reports on the synthesis of polymer polyaniline, a conductive polymer by nature, and the preparation of polyaniline/carbon particle (PANI/CP) composites by in situ polymerization. The solution properties and conductivities in solution of synthesized PANI and PANI/CP materials were analyzed. The viscosity of PANI and PANI/CP composite materials in N-methylpyrrolidinone (NMP) solvent at different temperatures was measured to examine their behavior in solution. Initially, the viscosity-molecular weight of PANI polymer was measured and calculated to be 78,521. The viscosities of PANI and PANI/CP composite materials decreased as the temperature increased. However, the viscosities of PANI/CP composite materials increased as the percent CP content in the composites increased. The ionic conductivities and pH changes in NMP solvent, measured at different concentrations of PANI and PANI/CP composite materials, and prepared in different ratios, were measured to investigate their behavior in solution. The ionic conductivities of PANI/CP composite materials increased as the percent CP content in the composites increased. Changes in the pH of PANI/CP composite materials decreased as the percent CP content in the composites increased. The conductivity of PANI/10% CP composite material in solution was greater than that of neat PANI polymer in solution; this indicated that CPs in PANI/10% CP composite materials made important positive contributions to the conductivities.


2003 ◽  
Vol 801 ◽  
Author(s):  
Ming Au

ABSTRACTIn this work, nanostructured composite materials Mg-Ni, Mg-Ni-La, Mg-Ni-Ce and Mg-LaNi5 have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), TEM, SEM and EDS for their phase compositions, crystal structure, grain size, particle morphology and the distribution of the catalyst elements. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. The results show that amorphous/nanostructured composite material Mg50%-Ni50% absorbs 5.89wt% within five minutes and desorbs 4.46% hydrogen within 50 minutes at 250°C respectively. Adding 5% La into Mg-Ni composite materials reduces the starting temperature of hydrogen absorption and desorption from 200°C to 25°C which suggests the formation of unstable hydrides. The composite material Mg80%-LaNi5 20% absorbs 1.96% hydrogen and releases 1.75 wt% hydrogen at 25°C. It is observed that mechanical alloying accelerates the hydrogenation kinetics of the magnesium based materials at low temperature, but a high temperature must be provided to release the absorbed hydrogen from the hydrided magnesium based materials. It is believed the dehydriding temperature is largely controlled by the thermodynamic configuration of magnesium hydride. Doping Mg-Ni nano/amorphous composite materials with lanthanum reduces the hydriding and dehydriding temperature. Although the stability of MgH2 can not be easily reduced by ball milling alone, the results suggest the thermodynamic properties of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La or other effective elements. Further investigation toward understanding the mechanism of additives will be rewarded.


Author(s):  
Yuri Skurydin ◽  
◽  
Elena Skurydina ◽  
Rushan Safin ◽  
Almira Khabibulina ◽  
...  

The studies are aimed at forming ideas on the structure and properties of composite materials obtained from pine wood and the processes occurring in the structure of wood tissue. The article presents the data on the influence of the conditions of barothermal treatment of pine wood samples by the method of explosive autohydrolysis on the properties of a thermowood composition. The composite material is obtained by hot pressing. The influence on density, strength and hydrophobic characteristics was studied. A series of samples was made under different conditions of the explosive autohydrolysis rigidity factor; at a temperature of 200 °C and the process duration from 0.08 to 10 min. All samples of composite material were obtained without the use of additional components. It was found that the increase in the hydrolysis rigidity factor leads to a decrease in the density of hydrolyzed wood from 440 to ~350 kg/m3. There is no fragmentation of wood samples with the selected processing parameters. Hot pressing of hydrolyzed wood obtained under conditions of low or moderate rigidity is accompanied by a linear increase in the density of the thermowood composite material from ~440 to 500 kg/m3. The consequence of a further increase in the rigidity factor is a slowdown in the rate of increase in the density of the composite material. The conditional boundary that determines the achievement of the maximum number of cross-linked intermolecular structures in the composite material corresponds to the rigidity factor of 3000–4500 min. More rigid processing conditions cause intensification of thermal degradation processes. The dependence of hydrophobic characteristics on the rigidity of the barothermal treatment conditions is complex. At the rigidity factor of 1000–3000 min, an extreme point is observed, before which the hydrophobic properties of the material deteriorate. Its water absorption and swelling increase from 50 to 130 % and from 15 to 54 %, respectively. The hydrophobic performance is significantly improved after reaching the extreme point. Water absorption and swelling reduce to ~20 % and ~10 %, respectively. Mild hydrolysis conditions do not result in a material with consistently high hydrophobic properties. The cross-linked structures are not enough to form a strong and water-resistant composition, and as a consequence, the hydrophobic characteristics deteriorate. Increasing the value of the hydrolysis rigidity factor increases the number of active components. Additional intermolecular bonds formed during pressing improve hydrophobic characteristics. The obtained results can be used in the creation of models of processes occurring in the structure of lignocellulose substance during explosive autohydrolysis and in the preparation of composite materials based on it. Optimal parameters of barothermal treatment for obtaining composite materials with specified physical and mechanical characteristics can be determined. Barothermal treatment of solid pine wood by explosive autohydrolysis contributes to the occurrence of chemically active components in the structure of wood tissue. Their number depends on the rigidity of the processing conditions. The properties of the resulting thermowood composition depend on the conditions of explosive autohydrolysis.


2020 ◽  
Vol 6 (159) ◽  
pp. 2-9
Author(s):  
A. Kondratiev ◽  
O. Andrieiev

Currently, wicker composite structures for various purposes are widely used in many industries. The use of such preforms allows to provide the possibility of automation of production, high speed and efficiency of the process of manufacturing polymeric composite materials and structures based on them. Knowledge of their properties allows you to optimize the production of structures with the necessary parameters during design. In the article the model of composite material on the basis of wicker reinforcement was further developed. For the practical implementation of this model, it is sufficient to test material samples with three different angles between the harnesses, for example, ± 30º, ± 45º and ± 60º. A mathematical description of the model is given. The model made it possible to predict the physical and mechanical characteristics of the composite material when it is laid out on curved surfaces. At the same time some fictitious limits of durability of a composite are defined. This is due to the fact that each value of the angle between the harnesses corresponds to its physical and mechanical characteristics of the unidirectional composite material. In this case, the ultimate strength curves necessarily pass through the points corresponding to the experimental data. The article shows that the possible deviations of the strength limits in the range of angles between the harnesses will lie within the range of characteristics obtained by testing. The article shows that in the realized interval of angles between the harnesses, almost any polynomial criterion of strength will accurately describe the strength of the composite reinforced with a braided sleeve. The obtained parameters, in contrast to the existing ones, allow to predict the strength characteristics of the composite on the basis of braided sleeves depending on the positioning and location of the material on the forming surface. The obtained results are the basis for solving the problems of calculating the strength of building structures from composite materials based on wicker preforms.


2005 ◽  
pp. 123-134
Author(s):  
Slavisa Putic ◽  
Marina Stamenovic ◽  
Branislav Bajceta ◽  
Predrag Stajcic ◽  
Srdjan Bosnjak

The aim of this paper was to present the determination of tensile strength Rm and modulus of elasticity Et of glass-epoxy composites at two different temperatures (at room temperature t=20?C, and at t =?50?C). Standard mechanical testing was carried out on glass woven-epoxy composite material with different structures (two specific weights of reinforcement, 210 g/m2 and 550 g/m2) and orientations (0?/90? and ?45?). Micromechanical analysis of failure was performed on a stereo microscope and SEM in order to determine real models and mechanisms of crack.


2011 ◽  
Vol 82 ◽  
pp. 172-177 ◽  
Author(s):  
Ana Trombeva-Gavriloska ◽  
Meri Cvetkovska ◽  
Viktor Gavriloski ◽  
Todorka Samardzioska

Increasing interest about composite materials and their use in the field of civil engineering offers possibility for development of new innovative materials, which will be used as constructive elements. Use of the fiber reinforced polymers as bearing materials in the field of civil engineering is the major leader in scientific research in the recent years. The concept of the composite materials itself, offers possibility of effective exploitation of mechanical characteristics of the separate components till their limit, even in the design process. Mechanical characteristics of each composite material depend on its components. In this paper experiments of different series composite materials, which are different according to used reinforcement and matrix, are presented. Designed mechanical characteristics of different types of composite materials are discussed in dependence on their components at indoor and elevated temperature.


2021 ◽  
Vol 4 (12(112)) ◽  
pp. 61-70
Author(s):  
Volodymyr Dudin ◽  
Dmytro Makarenko ◽  
Oleksii Derkach ◽  
Yevhen Muranov

This paper reports a comprehensive laboratory study into the thermophysical, physical-mechanical characteristics, and tribological properties of the designed composite materials based on polytetrafluoroethylene. In the structures of machines and mechanisms, a significant role belongs to the tribological conjugations made from polymeric and polymer-composite materials. The reliability of machines, in general, depends to a large extent on the reliability of movable connections. Composite materials of nonmetallic origin have a low cost, they are resistant to most aggressive chemicals and are capable of operating under conditions without lubrication. It was established that the characteristics and properties of materials must be adapted to the working conditions of separately considered tribological conjugations. The mechanisms of thermal destruction have been established, both in the basic material and the carbon fiber based on it. It was found that carbon fiber, regardless of its content (quantity) in the polymer-composite material based on polytetrafluoroethylene, is mainly oriented perpendicular to the force application plane. It was found that with an increase in the carbon fiber content from 10 to 40 % by weight, the heat capacity decreases by 16‒39 % compared to the main material. The optimal operating modes for the designed composite materials have been substantiated on the basis of a pv factor: under a dry friction mode – up to 4 MPa∙m/s; at friction with lubrication – up to 36.4 MPa∙m/s. The dependence has been established of the friction coefficient on the operating modes of a composite material based on polytetrafluoroethylene containing 20 % by weight of carbon fiber when lubricated with oil and water. The results reported here make it possible to synthesize the physical-mechanical characteristics and tribological properties of composite materials in accordance with the required modes of tribological conjugation.


Sign in / Sign up

Export Citation Format

Share Document