scholarly journals Mapping Landscape Positions and Relevance of Two Dambo-Springs: Information for Drought Water Shortage Effects Management in Incalaue River Basin in Niassa Special Reserve, Mozambique

Author(s):  
Ezrah Natumanya ◽  
Natasha Ribeiro ◽  
Majaliwa Jackson Gilbert Mwanjalolo ◽  
Franziska Steinbruch
Keyword(s):  
2014 ◽  
Vol 14 (6) ◽  
pp. 1057-1066 ◽  
Author(s):  
Ying Xie ◽  
Xuyong Li ◽  
Chunsheng Yang ◽  
Yang Yu

Water shortage is a major problem in northern China, because of a huge population and rapid economic growth. Taking the Luanhe River Basin (LRB) as a study area, we set up a System Dynamics (SD) model of the basin for the period 2005–2010, and considered various important socioeconomic and environmental factors and their correlation. Significant trends for the period 2011–2030 were simulated and the water resource carrying capacity (WRCC) of the LRB and its trends over the next 30 years were analyzed. The results indicate a decreasing trend of WRCC in the basin and that current economic growth is not sustainable. The study investigated possible optimized allocation projects. The most apt project would involve a combination of strategies that could considerably increase the WRCC, reduce demand, and improve water quality.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 845 ◽  
Author(s):  
Hao Fu ◽  
Xiaoliu Yang

Inter-basin water transfer projects are widely used in water-stressed areas. North China is facing severe imbalance between water demand and water supply. The South-to-North Water Diversion (SNWD) Project was built to transfer water from the Yangtze River Basin to the Hai River Basin. The Fuyang River Basin in the southern part of the Hai River Basin, passing through the Handan city, was chosen as the study area. To identify the effects of the SNWD Project on the water-receiving area, this paper used the decision support system AQUATOOL to simulate the water-dispatching scheme while using the water from the SNWD Project for domestic need in different level years. The results indicate that the SNWD Project provided 128.32 × 106 m3 of water in a wet year, 109.88 × 106 m3 in a normal year and 135.14 × 106 m3 in a dry year to this area. The added quantity of recycled water is 56.75 × 106 m3, 50.59 × 106 m3 and 57.52 × 106 m3, respectively. The water shortage in normal years was covered by the SNWD Project and the water shortage in dry years was reduced by 62.4%. Local environment was improved because of the SNWD Project, i.e., the SNWD water replaced and reduced the use of groundwater and increased the inflow to the Fuyang River and the Yongnian Wetland by increasing the recycled water. This research has demonstrated the SNWD Project has started to play a key role in securing water use and improving the environment in the water-receiving area since its completion in 2014.


2020 ◽  
Vol 20 (6) ◽  
pp. 55-66
Author(s):  
Sehoon Kim ◽  
Chunggil Jung ◽  
Jiwan Lee ◽  
Jinuk Kim ◽  
Seongjoon Kim

This study is to evaluate future agricultural water supply capacity in Geum river basin (9,865 km<sup>2</sup>) using SWAT and MODSIM-DSS. The MODSIM-DSS was established by dividing the basin into 14 subbasins, and the irrigation facilities of agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped within each subbasin, and networked between subbasins including municipal and industrial water supplies. The SWAT was calibrated and validated using 11 years (2005-2015) daily streamflow data of two dams (DCD and YDD) and 4 years (August 2012 to December 2015) data of three weirs (SJW, GJW, and BJW) considering water withdrawals and return flows from agricultural, municipal, and industrial water uses. The Nash−Sutcliffe efficiency (NSE) of two dam and three weirs inflows were 0.55∼0.70 and 0.57∼0.77 respectively. Through MODSIM-DSS run for 34 years from 1982 to 2015, the agricultural water shortage had occurred during the drought years of 1982, 1988, 1994, 2001 and 2015. The agricultural water shortage could be calculated as 197.8 × 10<sup>6</sup> m<sup>3</sup>, 181.9 × 10<sup>6</sup> m<sup>3</sup>, 211.5 × 10<sup>6</sup> m<sup>3</sup>, 189.2 × 10<sup>6</sup> m<sup>3</sup> and 182.0 × 10<sup>6</sup> m<sup>3</sup> respectively. The big shortages of agricultural water were shown in water resources unit map number of 3004 (Yeongdongcheon) and 3012 (Geumgang Gongju) areas exceeding 25.1 × 10<sup>6</sup> m<sup>3</sup> and 47.4 × 10<sup>6</sup> m<sup>3</sup>. From the estimation of future agricultural water requirement using RCP 8.5 INM-CM4 scenario, the 3004 and 3012 areas showed significant water shortages of 26.1 × 10<sup>6</sup> m<sup>3</sup> (104.1%) and 50.9 × 10<sup>6</sup> m<sup>3</sup> (107.4%) in 2080s (2070∼2099) compared to the present shortages. The water shortages decreased to 23.6 × 10<sup>6</sup> m<sup>3</sup> (94.0%) and 43.3 × 10<sup>6</sup> m<sup>3</sup> (91.4%) below of the present shortages by developing irrigation facilities.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 883 ◽  
Author(s):  
Mahtsente Tadese ◽  
Lalit Kumar ◽  
Richard Koech

Understanding the hydrological processes of a watershed in response to climate change is vital to the establishment of sustainable environmental management strategies. This study aimed to evaluate the variability of potential evapotranspiration (PET) and water availability in the Awash River Basin (ARB) under different climate change scenarios and to relate these with long-term drought occurrences in the area. The PET and water availability of the ARB was estimated during the period of 1995–2009 and two future scenarios (2050s and 2070s). The representative concentration pathways (RCP4.5 and RCP8.5) simulations showed an increase in the monthly mean PET from March to August in the 2050s, and all the months in the 2070s. The study also identified a shortage of net water availability in the majority of the months investigated and the occurrence of mild to extreme drought in about 40–50% of the analysed years at the three study locations (Holetta, Koka Dam, and Metehara). The decrease in water availability and an increase in PET, combined with population growth, will aggravate the drought occurrence and food insecurity in the ARB. Therefore, integrated watershed management systems and rehabilitation of forests, as well as water bodies, should be addressed in the ARB to mitigate climate change and water shortage in the area.


2018 ◽  
Vol 15 (2) ◽  
pp. 113-123 ◽  
Author(s):  
ML Raihan ◽  
MA Sarker ◽  
MAM Miah

The objectives of the study were to (i) assess the extent of water shortage in the downstream of Teesta River Basin (TRB) areas; (ii) explore the problems associated with crop production due to water shortage in TRB areas and (iii) examine the impact of water shortage on crop production in TRB areas. The study was conducted in four villages under Nilphmari district during April, 2015. By secondary data analysis and farmers’ perception it was clear that water flow and discharge of Teesta river was decreasing significantly during the last 15 years. The major impact was the dramatic increase in costs of irrigation of major crops and ultimately rise in the costs of production and less profit from farming. All of the farmers (100%) opined that the irrigation costs of major crops have been increasing due to shortage of water. The cultivation of LWRC due to water shortage was also a major impact of water shortage on crop production. Farmers were concentrating more on cultivating maize, tobacco, wheat, different types of vegetables etc. compared to rice particularly in dry season. Different types of problems like increased amount of heavy metal in crop land due to continuous uplifting of ground water, decrease soil fertility, increase pests and diseases to crops, fallowing of high and medium high land, increase of fertilizer and pesticide costs etc. were affecting farmers severely in crop production.SAARC J. Agri., 15(2): 113-123 (2017)


Author(s):  
Han Wu ◽  
Donghong Xiong ◽  
Bintao Liu ◽  
Su Zhang ◽  
Yong Yuan ◽  
...  

Drought is one of the most frequent meteorological disasters, and has exerted significant impacts on the livelihoods and economy of the Koshi River Basin (KRB). In this study, we assessed drought patterns using the Crop Water Shortage Index (CWSI) based on the MOD16 product for the period between 2000 and 2014. The results revealed that the CWSI based on the MOD16 product can be act as an indicator to monitor the characteristics of the drought. Significant spatial heterogeneity of drought was observed in the basin, with higher CWSI values downstream and upstream than in the midstream. The midstream of the KRB was dominated by light drought, moderate drought occurred in the upstream, and the downstream was characterized by severe drought. The monthly CWSI during one year in KRB showed the higher CWSI between March to May (pre-monsoon) and October to December (post-monsoon) rather than June to September (monsoon), and the highest was observed in the month of April, suggesting that precipitation plays the most important role in the mitigation of CWSI. Additionally, the downstream and midstream showed a higher variation of drought compared to the upstream in the basin. This research indicates that the downstream suffered severe drought due to seasonal water shortages, especially during the pre-monsoon, and water-related infrastructure should be implemented to mitigate losses caused by drought.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2743
Author(s):  
Kittiwet Kuntiyawichai ◽  
Sarayut Wongsasri

The Lam Phaniang River Basin is one of the areas in Northeast Thailand that experiences persistent drought almost every year. Therefore, this study was focused on the assessment of drought severity and vulnerability in the Lam Phaniang River Basin. The evaluation of drought severity was based on the Drought Hazard Index (DHI), which was derived from the Standardized Precipitation-Evapotranspiration Index (SPEI) calculated for 3-month (short-term), 12-month (intermediate-term), and 24-month (long-term) periods. Drought vulnerability was assessed by the Drought Vulnerability Index (DVI), which relied on water shortage, water demand, and runoff calculated from the WEAP model, and the Gross Provincial Product (GPP) data. A drought risk map was generated by multiplying the DHI and DVI indices, and the drought risk level was then defined afterwards. The CNRM-CM5, EC-EARTH, and NorESM1-M global climate simulations, and the TerrSet software were used to evaluate the potential impacts of future climate under RCPs 4.5 and 8.5, and land use during 2021–2100, respectively. The main findings compared to baseline (2000–2017) revealed that the average results of future rainfall, and maximum and minimum temperatures were expected to increase by 1.41 mm, and 0.015 °C/year and 0.019 °C/year, respectively, under RCP 4.5 and by 2.72 mm, and 0.034 °C/year and 0.044 °C/year, respectively, under RCP 8.5. During 2061–2080 under RCP 8.5, the future annual water demand and water shortage were projected to decrease by a maximum of 31.81% and 51.61%, respectively. Obviously, in the Lam Phaniang River Basin, the upper and lower parts were mainly dominated by low and moderate drought risk levels at all time scales under RCPs 4.5 and 8.5. Focusing on the central part, from 2021–2040, a very high risk of intermediate- and long-term droughts under RCPs 4.5 and 8.5 dominated, and occurred under RCP 8.5 from 2041–2060. From 2061 to 2080, at all time scales, the highest risk was identified under RCP 4.5, while low and moderate levels were found under RCP 8.5. From 2081–2100, the central region was found to be at low and moderate risk at all time scales under RCPs 4.5 and 8.5. Eventually, the obtained findings will enable stakeholders to formulate better proactive drought monitoring, so that preparedness, adaptation, and resilience to droughts can be strengthened.


2013 ◽  
Vol 864-867 ◽  
pp. 2167-2170
Author(s):  
Mei Xian Mo ◽  
Feng Li ◽  
Yu Wang ◽  
Chun Yan Li

For many years, drought is severe in the basins and the mountain area of Nandong underground river basin. The author analyzes the reasons of the drought from the hydrogeological characteristics of the basin, climate characteristics, groundwater pollution ,and study indicates that the drought causes is that shallow groundwater and surface water has been seriously polluted, and it is extremely difficult to look for underground karst water. Then the author analyse solutions to solve these problems: building underground dam in Moshigou to develop Nandong underground river; rising underground water level elevation up to 1253m,it can intercept about 306 million m3 underground water. In this way, the author predict that the water shortage problem can be solved fundamentally in these three basins.


Sign in / Sign up

Export Citation Format

Share Document