scholarly journals A Numerical Study of MHD and Heat Transfer Analysis in a non-Newtonian Eyring-Powell Fluid from an Isothermal Sphere with Thermal Slip

2017 ◽  
Vol 10 (17) ◽  
pp. 1-5
Author(s):  
K. Madhavi ◽  
N. Nagendra ◽  
V. Ramachandra Prasad ◽  
A. Subba Rao ◽  
G. S. S. Raju ◽  
...  
Author(s):  
Y.-H. Ho ◽  
M. M. Athavale ◽  
J. M. Forry ◽  
R. C. Hendricks ◽  
B. M. Steinetz

A numerical study of the flow and heat transfer in secondary flow elements of the entire inner portion of the turbine section of the Allison T-56/501D engine is presented. The flow simulation included the interstage cavities, rim seals and associated main path flows, while the energy equation also included the solid parts of the turbine disc, rotor supports, and stator supports. Solutions of the energy equations in these problems usually face the difficulty in specifications of wall thermal boundary conditions. By solving the entire turbine section this difficulty is thus removed, and realistic thermal conditions are realized on all internal walls. The simulation was performed using SCISEAL, an advanced 2D/3D CFD code for predictions of fluid flows and forces in turbomachinery seals and secondary flow elements. The mass flow rates and gas temperatures at various seal locations were compared with the design data from Allison. Computed gas flow rates and temperatures in the rim and labyrinth seal show a fair 10 good comparison with the design calculations. The conjugate heat transfer analysis indicates temperature gradients in the stationary intercavity walls, as well as the rotating turbine discs. The thermal strains in the stationary wall may lead to altered interstage labyrinth seal clearances and affect the disc cavity flows. The temperature, fields in the turbine discs also may lead to distortions that can alter the rim seal clearances. Such details of the flow and temperature fields are important in designs of the turbine sections to account for possible thermal distortions and their effects on the performance. The simulation shows that the present day CFD codes can provide the means to understand the complex flow field and thereby aid the design process.


2021 ◽  
Vol 321 ◽  
pp. 04007
Author(s):  
Abdelkader Boutra ◽  
Seddik Kherroubi ◽  
Abderrahmane Bourada ◽  
Youb Khaled Benkahla ◽  
Nabila Labsi ◽  
...  

Flow and heat transfer analysis in ventilated cavities is one of the most widely studied problems in thermo-fluids area. Two-dimensional mixed convection in a ventilated rectangular cavity with baffles is studied numerically and the fluid considered in this study is hot air (Pr = 0.71). The horizontal walls are maintained at a constant temperature, higher than that imposed on the vertical ones. Two very thin heat-conducting baffles are inserted inside the enclosure, on its horizontal walls, to control the flow of convective fluid. The governing equations are discretized using the finite volume method and the SIMPLER algorithm to treat the coupling velocity–pressure. Line by line method is used to solve iteratively the algebraic equations. The effect of the Richardson number Ri (0.01- 100) and the location of the baffles within the cavity on the isothermal lines, streamlines distributions and the average Nusselt number (Nu) has been investigated. The result shows that the location opposite the baffles, close to the fluid outlet, is the optimal choice to be considered for industrial applications.


2020 ◽  
Vol 330 ◽  
pp. 01006
Author(s):  
F. Mebarek-Oudina ◽  
H. Laouira ◽  
A. Aissa ◽  
A. K. Hussein ◽  
M. El Ganaoui

In this work, a numerical study of mixed convection inside a horizontal channel with an open trapezoidal enclosure subjected to a discrete heat source in different locations is carried out. The heat source with the length of ε = 0.75, is maintained at a constant temperature. The air flow with a fixed velocity and a cold temperature enters the channel horizontally. The other walls of the enclosure and the channel are adiabatic. The results are presented in the form of the contours of velocity, isotherms and Nusselt numbers profiles for various heat source locations, Prandtl number (Pr = 0.71) and Reynolds number (Re = 100) respectively. The distribution of the isotherms depends significantly on the position of the heat source. We noted that the best heat transfer is detected where the heat source is placed in the top of the left .


2021 ◽  
Vol 11 (17) ◽  
pp. 8271 ◽  
Author(s):  
Cheng Chen ◽  
Ming-An Yu ◽  
Lin Qiu ◽  
Hong-Yu Chen ◽  
Zhen-Long Zhao ◽  
...  

(1) Background: Microwave ablation (MWA) is a common tumor ablation surgery. Because of the high temperature of the ablation antenna, it is strongly destructive to surrounding vital tissues, resulting in high professional requirements for clinicians. The method used to carry out temperature observation and damage prediction in MWA is significant; (2) Methods: This work employs numerical study to explore temperature distribution of typical tissues in MWA. Firstly, clinical MWA based on isolated biological tissue is implemented. Then, the Pennes models and microwave radiation physics are established based on experimental parameters and existing related research. Initial values and boundary conditions are adjusted to better meet the real clinical materials and experimental conditions. Finally, clinical MWA data test this model. On the premise that the model is matched with clinical MWA, fat and bone are deduced for further heat transfer analysis. (3) Results: Numerical study obtains the temperature distribution of biological tissue in MWA. It observes the heat transfer law of ablation antenna in biological tissue. Additionally, combined with temperature threshold, it generates thermal damage of biological tissues and predicts the possible risks in MWA; (4) Conclusions: This work proposes a numerical study of typical biological tissues. It provides a new theoretical basis for clinically thermal ablation surgery.


Author(s):  
Debayan Dasgupta ◽  
Kankan Kishore Pathak ◽  
Asis Giri

Abstract A numerical study is performed on simultaneous heat and mass transfer from a shrouded vertical nonisothermal variable height fin array, representing dehumidification process under natural convection. Fluid properties are treated as uniform, and the fluid is assigned to comply with Boussinesq approximation to include the effect of density variation with temperature and concentration. Semi-implicit method for the pressure linked equations revised (SIMPLER) algorithm is adopted to resolve pressure and velocity coupling. A detailed parametric investigation of fin spacing, variable fin height, and fin tip to shroud clearance for a range of thermal and mass Grashof number is undertaken. Results indicate that in case of smaller fin spacing, involving fin length of 0.3 m, coefficients of sensible and latent heat transfer increase with the decreasing variable height (H1*) of fin and become maximum at H1*=0.5, for all thermal and mass Grashof numbers considered presently. Further, total heat transfer analysis on a particular base length due to sensible heat shows a maximum of 24.4% enhancement, whereas same due to the latent heat shows a maximum of 25.8% enhancement, depending on the values of clearance. Induced velocities also increase with the decreasing variable height of fin (H1*), which influences the heat and mass transport. The output parameters of this analysis, like induced velocities and overall Nusselt numbers due to the sensible and latent heat, are correlated with the governing parameters. The correlation coefficients are found to be in a range from 0.97 to 0.99.


Author(s):  
Banjara Kotresha ◽  
N. Gnanasekaran

PurposeThis paper aims to discuss about the two-dimensional numerical simulations of fluid flow and heat transfer through high thermal conductivity metal foams filled in a vertical channel using the commercial software ANSYS FLUENT.Design/methodology/approachThe Darcy Extended Forchheirmer model is considered for the metal foam region to evaluate the flow characteristics and the local thermal non-equilibrium heat transfer model is considered for the heat transfer analysis; thus the resulting problem becomes conjugate heat transfer.FindingsResults obtained based on the present simulations are validated with the experimental results available in literature and the agreement was found to be good. Parametric studies reveal that the Nusselt number increases in the presence of porous medium with increasing thickness but the effect because of the change in thermal conductivity was found to be insignificant. The results of heat transfer for the metal foams filled in the vertical channel are compared with the clear channel in terms of Colburn j factor and performance factor.Practical implicationsThis paper serves as the current relevance in electronic cooling so as to open up more parametric and optimization studies to develop new class of materials for the enhancement of heat transfer.Originality/valueThe novelty of the present study is to quantify the effect of metal foam thermal conductivity and thickness on the performance of heat transfer and hydrodynamics of the vertical channel for an inlet velocity range of 0.03-3 m/s.


2019 ◽  
Vol 124 ◽  
pp. 01010
Author(s):  
A. N. Rogalev ◽  
N. D. Rogalev ◽  
V. O. Kindra ◽  
S. K. Osipov ◽  
A. S. Zonov

Evaluation of the heat transfer and hydraulic performance of a new pin fin-dimple cooling system in a rectangular channel shows its advantage. The performance are compared with the pin fin system ones with 3-D Reynolds averaged Navier-Stokes (RANS) equations. The fluid flow and heat transfer analysis for the Reynolds numbers from 8000 to 70000 involved the shear stress transport turbulence model. The new system forms a high-intensity vortex around the pin fin-dimple that increases the near-wall turbulent mixing level that intensifies the heat transfer. The calculation results indicate increases of the averaged Nusselt number and the averaged friction factor of 7–13% and 7–12% respectively against the pin fin.


Sign in / Sign up

Export Citation Format

Share Document