scholarly journals Morphological and electrochemical behavior of polycaprolactone-chitosan-collagen film fabricated by Dip Coating on Ti6Al4V

2017 ◽  
Author(s):  
◽  
F. C. García-Rueda

This paper presents the characterization by the infrared technique, atomic force microscopy, scanning electron microscopy and contact angle of the polymer coatings of the binary mixture of polycaprolactone-chitosan and its modification after addition of collagen were deposited by the technique of Dip Coating on Ti6Al4V alloy; also by the technique of Electrochemical Impedance Spectroscopy were evaluated the Ti6Al4V alloy coated by polymer blends zero days immersion in Simulate Bode Fluid and of adsorptivity calcium to 21 days immersion. Thus, representative effects on the role of collagen to increase the surface roughness, higher values in the polarization resistance of Ti6Al4V, better behavior parameters free energy, atomic adsorption of calcium and the consolidation of a found new interface associated with the monolayer calcium simulated by equivalent circuits and observed by Scanning Electron Microscopy.

2017 ◽  
Author(s):  
◽  
F. C García-Rueda

This paper presents the characterization by the infrared technique, atomic force microscopy, scanning electron microscopy and contact angle of the polymer coatings of the binary mixture of polycaprolactone-chitosan and its modification after addition of collagen were deposited by the technique of Dip Coating on Ti6Al4V alloy; also by the technique of Electrochemical Impedance Spectroscopy were evaluated the Ti6Al4V alloy coated by polymer blends zero days immersion in Simulate Bode Fluid and of adsorptivity calcium to 21 days immersion. Thus, representative effects on the role of collagen to increase the surface roughness, higher values in the polarization resistance of Ti6Al4V, better behavior parameters free energy, atomic adsorption of calcium and the consolidation of a found new interface associated with the monolayer calcium simulated by equivalent circuits and observed by Scanning Electron Microscopy.


2008 ◽  
Vol 587-588 ◽  
pp. 795-799 ◽  
Author(s):  
A. Di Paola ◽  
M. Addamo ◽  
M. Bellardita ◽  
E. García-López ◽  
G. Marcì ◽  
...  

Photoactive films consisting of pure anatase, brookite or rutile were deposited on glass slides by a dip coating process from water dispersions or solutions obtained by using TiCl4 as the precursor. The films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The photocatalytic activity of the various samples was evaluated by using the photooxidation of 2-propanol in gas solid regime as probe reaction. Brookite and anatase films showed a good photoactivity degrading the substrate and the propanone produced during the reaction.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


2021 ◽  
Author(s):  
Petar Stanić ◽  
◽  
Nataša Vukićević ◽  
Vesna Cvetković ◽  
Miroslav Pavlović ◽  
...  

Four 2-thiohydantoin derivatives were synthesized and their corrosion inhibition properties on mild steel (MS) in 0.5M HCl solution was evaluated using usual gravimetric and electrochemical methods (weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Morphology of the metal surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The study has shown that these compounds provide good protection for mild steel against corrosion in the acidic medium.


1999 ◽  
Vol 5 (6) ◽  
pp. 413-419 ◽  
Author(s):  
Bernardo R.A. Neves ◽  
Michael E. Salmon ◽  
Phillip E. Russell ◽  
E. Barry Troughton

Abstract: In this work, we show how field emission–scanning electron microscopy (FE-SEM) can be a useful tool for the study of self-assembled monolayer systems. We have carried out a comparative study using FE-SEM and atomic force microscopy (AFM) to assess the morphology and coverage of self-assembled monolayers (SAM) on different substrates. The results show that FE-SEM images present the same qualitative information obtained by AFM images when the SAM is deposited on a smooth substrate (e.g., mica). Further experiments with rough substrates (e.g., Al grains on glass) show that FE-SEM is capable of unambiguously identifying SAMs on any type of substrate, whereas AFM has significant difficulties in identifying SAMs on rough surfaces.


Sign in / Sign up

Export Citation Format

Share Document