scholarly journals Combined Cracking Residue and Mechanical Activation Oil Shale

Author(s):  
Marina V. Mozhayskaya ◽  
Vladimir G. Surkov ◽  
Mikhail A. Kopytov ◽  
Anatoly K. Golovko

The joint cracking of mechanically activated oil shale and petroleum residue was studied. The introduction of oil shale allowed to intensify the process of destruction of high-molecular components of the petroleum residue. In the obtained liquid thermolysis products, oils predominate from 40,2 to 81,1% wt. With an increase in the share of oil shale in the cracking products, the proportion of asphaltenes decreases from 4,2 to 2,8% wt, and of tar from 6,7 to 4,8% wt. In gaseous products, the proportion of carbon dioxide and carbon monoxide increases markedly. The introduction of mechanically activated oil shale also affects the fractional composition of thermolysis products; the proportion of gasoline (IPB – 200 °С) and diesel fractions (200–360 °С) changes

Author(s):  
Marina V. Mozhayskaya ◽  
Galina S. Pevneva ◽  
Vladimir G. Surkov

The study cracking of a mixture of mechanically activated oil shale (MO OSh) and fuel oil, a mixture of demineralized MO GS and fuel oil has been investigated. The data on the composition of liquid products showed that after the removal of mineral components, oil shale is more easily destroyed due to the release of kerogen. It is shown that in the obtained liquid products of the cracking of the mixture of fuel oil – demineralized MO OSh, the proportion of oils increases to 74.6 % wt. In the composition of gaseous products of cracking, the amount of hydrogen, methane and ethane is noticeably reduced. According to the data on the fractional composition of liquid products, it was found that during the cracking of mixtures of fuel oil and MO HS, after the removal of carbonates and silicates, the proportion of gasoline and diesel fractions inc


1930 ◽  
Vol 3 (3) ◽  
pp. 241-251 ◽  
Author(s):  
J. C. McLennan F.R.S. ◽  
J. V. S. Glass B.A.

This paper deals with the action of cathode rays on gases and gas mixtures. Methane, methane-oxygen mixtures, carbon monoxide and carbon monoxide-oxygen mixtures were examined. Methane gave small percentages of hydrogen and ethane. Methane and oxygen mixtures gave as gaseous products, carbon monoxide, carbon dioxide and hydrogen, the only other products being water and formic acid. The relative proportions of the products do not vary widely under a wide variation of conditions.The reaction was found to be of the first order with respect to pressure. The reaction rate increases linearly with the voltage up to a certain value, after which it becomes nearly independent of the voltage.The action of cathode rays on carbon monoxide produces carbon dioxide and a solid brown suboxide which is extremely soluble in water, and its composition corresponds to a formula (C3O)n. If the carbon monoxide is moist, no visible amount of solid or liquid is found and there is less carbon dioxide.Carbon monoxide-oxygen mixtures under the action of cathode rays form carbon dioxide. Presence of water vapor has a retarding effect on the reaction. For mixtures of the same composition the reaction rate is proportional to the total pressure. For dry mixtures the product increases with the carbon monoxide present; when moist it is much less, and independent of the carbon monoxide.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 7-14
Author(s):  
V. V. Chesnokov ◽  
A. S. Chichkan ◽  
V. N. Parmon

Tar carbonization was studied in the absence or presence of the 7% Ni/CNT catalyst. It was shown that tar carbonization at a temperature of 350 °С without the catalyst leads to the formation of gaseous and liquid products and oil coke. Thermolysis products are formed via the separation of lateral hydrocarbon chains from the initial polyaromatic hydrocarbons. Gaseous products consist of С1-С6 hydrocarbons and sulfur-containing gases H2S and COS. Fractional composition of the liquid thermolysis products was studied. It was found that 50 % of the liquid products are represented by gasoline and diesel fractions. The 7% Ni/CNT catalyst was prepared by impregnation. The effect of this catalyst on the tar carbonization in the temperature range of 300–550 °С was studied. The addition of the 7% Ni/CNT catalyst to tar increased its yield and decreased the sulfur content due to partial conversion of sulfur to hydrogen sulfide and COS, which are removed with the gas phase. The electron microscopy study showed that the oil coke obtained upon catalytic tar carbonization is reinforced with carbon nanotubes.


1982 ◽  
Vol 60 (22) ◽  
pp. 2876-2882 ◽  
Author(s):  
K. Hiraoka ◽  
K. Aoyama ◽  
T. Nakamura ◽  
S. Mochizuki ◽  
K. Mitsumori ◽  
...  

A study was made on the decomposition of PCB's in a radio-frequency glow discharge plasma. PCB's were completely decomposed in plasmas of a few Torr of oxygen, hydrogen, and water vapor. Gaseous products from PCB's in an oxygen plasma were carbon monoxide, carbon dioxide, water, hydrogen chloride, chlorine, and chlorine dioxide. Hazardous compounds such as phosgene and vinyl chloride were not detected by gc–ms analysis. The total quantity of oxygen flowed past the sample was only about three times the stoichiometric oxygen required for the perfect oxidation of PCB's. In a hydrogen plasma, PCB's gave ethane and isobutane as major gaseous products and several higher hydrocarbons as minor products. Almost all of the chlorine in PCB's was converted to hydrogen chloride. Major products from PCB's in a water vapor plasma were carbon dioxide, carbon monoxide, and hydrogen chloride. No other products were detected. The mechanisms for reactions occurring in plasmas are discussed. The importance of the wall effect for the formation of solid products is discussed.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


2018 ◽  
Vol 216 ◽  
pp. 03001 ◽  
Author(s):  
Evgeny Ivanayskiy ◽  
Aleksei Ishkov ◽  
Aleksandr Ivanayskiy ◽  
Iakov Ochakovskii

The paper studies the influence of shielding gas on the composition and the structure of weld joint metal of 30MnB5 steel applied in essential parts of automobiles and tractors. The welding was performed in inert, oxidizing and reducing atmospheres. It was established that TIG welding with argon used as shielding gas did not provide the required mechanical properties when using conventional welding materials. Carbon dioxide during MAG welding caused partial burning of alloying elements. Carbon monoxide used as shielding gas was proved to form reducing atmosphere enabling to obtain chemical composition close to the base metal composition. Metallographic examinations were carried out. The obtained results provided full-strength weld, as well as the required reliability and durability of welded components and joints.


Sign in / Sign up

Export Citation Format

Share Document