scholarly journals Prospects for the Development of Alternative Hydropower in the Krasnoyarsk Territory

Author(s):  
Konstantin S. Fediy ◽  
Sergey A. Vstovskiy ◽  
Igor S. Fedorchenko ◽  
Evgeny A. Spirin

The disadvantage of hydroelectric dams is the flooding and a material breach of the ecology of the region, therefore the use of such hydroelectric power station is reasonable when no alternative method of providing the required power. In this regard, in most cases, it is advisable to use free-flow microelectric power plants. Free-threaded micro hydropower plants constitute a power unit mounted in the flow of the river. The main difference between free-flow microelectric power plants and dams is the use of kinetic energy of the flow, rather than potential. This makes it possible to eliminate the need for earthworks and the construction of additional hydraulic structures. Free-threaded micro hydropower plants can be grouped, forming a cascade of micro hydro. In order to increase the reliability of free-flow microelectric power plants, the design tends to use low-speed generators with rotation speeds from 140 to 650 rpm, which can significantly simplify or completely eliminate the transmission mechanism

2015 ◽  
Vol 5 (4) ◽  
pp. 86-92 ◽  
Author(s):  
Mikhail Ivanovich BALZANNIKOV

Considered run-of-river hydropower plants (HPP). Notes the importance of technical-economic calculations in the justifi cation of large water-conducting elements of the path these types of HPP. The methodology of economic substantiation of the expediency of increasing the length of the draft tube. Using the technique of the calculations for lowpressure hydroelectric run-of-river type. The results of the analysis of the influence of the operating conditions of the hydroelectric power station on basic geometrical parameters of draft tube.


2021 ◽  
pp. 57-65
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK

The issues of solving modern problems related to meeting the energy needs of environmental hydraulic engineering are considered. The problem of improving the methodological basis for choosing the optimal arrangement of elements of photovoltaic devices (SPEU) on the blocks of the dam building of hydroelectric power plants (HPP) of 4 main types is formulated. The graphical dependences of the estimation of the power ratio of the combined SPEU and HPP on the diameter of the turbine wheel are analyzed. As a result of the analysis of the influence of the location of the transformer on the possibility of placing the SPEU on the buildings of the hydroelectric power station, it was revealed that in order to increase the adaptability of the revitalized even large hydro system with a separate building of the hydroelectric power station, it is preferable to place power transformers from the downstream side. It is noted that according to the results of the schematic study for the medium-pressure hydroelectric complex Lagdo in the north of Cameroon, the placement of solar cells will provide an additional 6.95% of the capacity of the operating hydroelectric power station.


2021 ◽  
pp. 67-74
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK ◽  
U. H. UMARU HAMANJODA

The results of the assessment and analysis of the operating modes of the power complex with the constructive and technological combination of hydraulic power plants (HPPs) with solar power plants (SFEU) in the presence of seasonal or daily regulation in the environmental hydro system are presented. The aspects of the operation of a hydroelectric power station with non-self-regulating derivation are considered in detail: when working in a load schedule with a maximum power equal to the installed one, and when the average daily power along the watercourse is approaching the provided one. It was found that in the first case, the influence of the SPEU regime on the joint work with the hydroelectric power station is to move a part of the load graph of the hydroelectric power plant with the maximum power to the base part of the schedule. In the second case, the influence of the SPEU mode consists in changing the variable part of the load graph, but the HPP, in contrast to the first case, retains its position in the load graph of the power system. The mode of operation of the hydroelectric power station becomes more uniform and at the same time, a smaller volume of the daily regulation basin (DRB) is required. For the example considered, the maximum power of the hydroelectric power station during the day increased from 50 MW to 54 MW. It has been revealed that even with the production of SPEU in 18% of the daily production of hydroelectric power plants, the volume of DRB is required approximately two times less. As a result, it is possible to increase the operating head at the hydroelectric power station and obtain the corresponding effect on power and electricity generation.


2020 ◽  
Vol 32 (4) ◽  
pp. 832-839
Author(s):  
Kazunori Hosotani ◽  
◽  
Hirofumi Yamamoto

Small and medium-sized hydroelectric power plants are scattered in mountainous areas of Japan. Many tunnels that have been constructed for the purpose of introducing water have been in operation for decades, and inspections to aging deterioration are indispensable, however checks and maintenance work within the tunnels where the ceiling is low and water is flowing is very burdensome. This research aims at labor saving of visual check work of an inspector who moves through a narrow tunnel and searches for a deformed portion, and a simple imaging support device with a camera on a walking aid and autonomous operation at a constant speed in the tunnel. In this article, a prototype of a walking assist type inspection device and a self-propelled monitoring robot that creates a developed image of the wall surface are described. The prototype device is tested in a free-flow tunnel at the Tsukuyone Hydroelectric Power Station in Tottori Prefecture where water intake into the tunnel is stopped due to renewal work from 2018 to 2019, and its practicality is evaluated.


2020 ◽  
Vol 10 (1) ◽  
pp. 71-76
Author(s):  
Sergey V. EVDOKIMOV ◽  
Vladimir A. SELIVERSTOV ◽  
Alla A. ORLOVA

Control over the state of the main hydraulic structures of Zhiguli hydroelectric power station is carried out according to observations of the control and measuring equipment installed in the facilities and in their base, as well as the results of systematic inspections and surveys conducted by both the power plant personnel and invited experts. A computer information and diagnostic system for monitoring the condition of facilities is being introduced at the hydroelectric power station. The introduction of this system made it necessary to pay attention to the reliability of the results obtained with the help of instrumentation. The aim of the research is to conduct a multivariate analysis of the state of hydraulic structures Zhigulevskaya HPP on the results of field observations of all devices. It is established that the antifiltration elements of the underground circuit of the HPP building were not effective enough for the specific geological conditions of the base in terms of damping the filtration head. The main pressure drop in the base occurs on the upper tooth of the HPP building, where the maximum filtration gradient is observed, which is very dangerous. In the course of research it was found that several piezometers in the base do not work or their indications cause great doubts, their repair and replacement are required. According to the results of the work, it is concluded that it is necessary to equip the main piezometers of the HPP building with remote water level meters and create an automated system of survey and monitoring of the base state on their basis.


Author(s):  
Zh. K. Kassymbekov ◽  
G. Zh. Kassymbekov

The goal of the project is to develop and use a hydrocyclone sand trap to improve the operation of a mini hydroelectric power station. In contrast to the existing design of a similar type of hydroelectric power station, a bulky sump for water purification has been replaced with an efficient hydrocyclone device. Due to this, a simplification of the design of the HPP is achieved, an increase in the degree of sand collection from the composition of the water used. Research methods. The initial data for the calculation were taken: the flow rate of water passing through the hydrocyclone and the pressure drop at the inlet and outlet of the hydrocyclone. Computer simulation of the process was carried out using the SolidWorks software (flow simulation). The main technological parameters and a rational mode of operation were established by testing experimental samples both in laboratory and in production conditions. Research results. In the established mode, the density of clarified water is equal to 1.009 ... 1.050 t / m3, and the degree of purification is 91 ... 97%. Replacing a bulky reinforced concrete sump with hydrocyclone sand traps of a simplified design reduces the cost of building a water treatment unit from 30% (existing) to 7%. This makes it possible to expand the volume of development of small hydroelectric power plants, especially in mountainous conditions.


Author(s):  
V. V. Slabunov ◽  
◽  
A. A. Kirilenko ◽  
O. V. Voyevodin ◽  
◽  
...  

Purpose: to assess the technological and regulatory and technical capabilities of developing and applying power supply complexes using the energy of water flow, in relation to Russian standards to meet the electricity needs of decentralized reclamation (irrigation) systems. Materials and methods. Scientific and technical materials of Russian and foreign authors, as well as the regulatory and technical base of the Russian Federation were used as the initial data. The information processing methods were comparison, analogy, classification and systematization. Results and discussion. Among various design features of the hydropower equipment under consideration, capable of meeting local needs for electricity and at the same time having the ability to combine with elements of an irrigation network (based on relative dimensions, shape, efficiency, etc.), micro-hydroelectric power plants stand out: with propeller, radial axial, axial and capsule hydraulic turbine. The most effective schemes for installing hydraulic turbines are horizontal direct-flow and vertical Z-shaped ones. Analysis of the register of standards in the field of technical regulation in the sphere of hydropower showed that out of 131 standards under consideration, 106 can be partially applied to micro hydropower plants. Providing low-power hydropower facilities with standardization documentation has a priority in the direction of operation (21 %), monitoring and state control (19 %), and repair and reconstruction (19 %). Conclusions. The functioning of a micro-hydroelectric power station based on the energy of water movement provides for the use of a set of design solutions, which requires additional study in order to be linked to the elements of reclamation (irrigation) systems. The scope of the considered standardization documents can be extended to small hydropower facilities, taking into account the specific features of their operation. In this regard, there is a need for the development of scientifically grounded provisions of existing or being developed regulatory documents.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1775
Author(s):  
Natalia Walczak ◽  
Zbigniew Walczak ◽  
Jakub Nieć

Trash racks are the first element mounted in inlet channels of hydraulic structures. Their primary task is to capture coarse pollutants flowing in the riverbed/river channel and protect water facilities downstream. With the use of these devices, it is possible to separate coarse suspended matter, branches carried with the current, floating plastic elements, etc., which undoubtedly contributes to a trouble-free flow through culverts or channels and prevents hydroelectric power plant turbines from failure. An important issue here is also to ensure the proper operation of trash racks, particularly in respect of hydraulic structures whose task is to convert water energy into electricity (hydropower plants). Proper operation of trash racks minimizes losses arising from obstructing the free flow of water through accumulated waste or, in the wintertime, through icing. Incorrect work in this area entails specific head losses, and consequently leads to economic harm. In the paper, the resistance values of trash racks were analyzed at small hydropower plants (SHPs) operating at low temperatures, determined under laboratory conditions, with the occurrence of frazil ice and ice. The results indicate that the added ice into the channel resulted in the formation of a cover in front of the trash racks with an average thickness of about 0.02 m. The accumulated ice increased the head losses up to 14%. The range of the ice cover depended on the weight added ice and reached 0.6 m in analyzed cases.


1974 ◽  
Vol 8 (10) ◽  
pp. 914-916
Author(s):  
I. S. Ronzhin ◽  
A. D. Osipov ◽  
V. Kh. Gol'tsman ◽  
A. B. Yumatov

Sign in / Sign up

Export Citation Format

Share Document