ASSESSMENT OF JOINT OPERATION OF HYDRAULIC AND SOLAR POWER PLANTS OF COMPLEX HYDRAULIC UNITS

2021 ◽  
pp. 67-74
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK ◽  
U. H. UMARU HAMANJODA

The results of the assessment and analysis of the operating modes of the power complex with the constructive and technological combination of hydraulic power plants (HPPs) with solar power plants (SFEU) in the presence of seasonal or daily regulation in the environmental hydro system are presented. The aspects of the operation of a hydroelectric power station with non-self-regulating derivation are considered in detail: when working in a load schedule with a maximum power equal to the installed one, and when the average daily power along the watercourse is approaching the provided one. It was found that in the first case, the influence of the SPEU regime on the joint work with the hydroelectric power station is to move a part of the load graph of the hydroelectric power plant with the maximum power to the base part of the schedule. In the second case, the influence of the SPEU mode consists in changing the variable part of the load graph, but the HPP, in contrast to the first case, retains its position in the load graph of the power system. The mode of operation of the hydroelectric power station becomes more uniform and at the same time, a smaller volume of the daily regulation basin (DRB) is required. For the example considered, the maximum power of the hydroelectric power station during the day increased from 50 MW to 54 MW. It has been revealed that even with the production of SPEU in 18% of the daily production of hydroelectric power plants, the volume of DRB is required approximately two times less. As a result, it is possible to increase the operating head at the hydroelectric power station and obtain the corresponding effect on power and electricity generation.

Author(s):  
Petro Lezhnyuk ◽  
Iryna Hunko ◽  
Juliya Malogulko ◽  
Iryna Kotylko ◽  
Lіudmyla Krot

Urgency of the research. Current trends of distributed generation development in Ukraine indicate a rapid generation in-crease from renewable energy plants. Most developed countries gradually refuse from the fossil fuels use and invest more and more to the “green” energy. Therefore, there is a need for a detailed study of the operation conditions of distributed energy sources due to their instability, as well as the processes that arise in distribution electric networks with diverse types of distributed energy sources. Target setting. In the producing process of power energy by distributed energy sources due to the increase in their num-ber, there are situations where several renewable sources of energy operate to only one system of buses. Thus, such distributive networks acquire the features of a local power system, which complicates the control process of such systems, and also there is a problem with the electricity supply of consumers. Actual scientific researches and issues analysis. The analysis of publications suggests that in literature more attention is paid to studying the operating modes of solar power plants, or small hydroelectric power plants. However, almost no attention was paid to the study of their cooperation work. Uninvestigated parts of general matters defining. Only a few works are devoted to the study of the cooperation of the diverce sources of distributed energy sources in the local electrical systems. That is why, their impact on power distribution networks and on the grid in general has not been studied extensively. The research objective. In this article was considered the influence of asynchronous generators on small hydroelectric power plants on the operation modes of distribution electrical networks, and were investigated the processes that are occurring in local power systems with different types of distributed energy sources. The statement of basic materials. Based on the research results, was developed a computer model of a such system in the PS CAD software environment. Two solar stations and one small hydroelectric power station with an asynchronous generator were connected to the power supply. It was shown the simulation of two modes of operation: a joint operation of a small hydroelectric power station, two solar power stations and a power supply center; a joint operation of a small hydroelectric pow-er plant, two solar power stations and a power supply disconnected. Conclusions. As a result of computer simulation, it is shown that by switching on a small hydroelectric power plant with an asynchronous generator in the case of an emergency shutdown of centralized power supply, it is possible to restore the work of solar power plants, and thus partially or completely restore the power supply of consumers.


2021 ◽  
pp. 57-65
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK

The issues of solving modern problems related to meeting the energy needs of environmental hydraulic engineering are considered. The problem of improving the methodological basis for choosing the optimal arrangement of elements of photovoltaic devices (SPEU) on the blocks of the dam building of hydroelectric power plants (HPP) of 4 main types is formulated. The graphical dependences of the estimation of the power ratio of the combined SPEU and HPP on the diameter of the turbine wheel are analyzed. As a result of the analysis of the influence of the location of the transformer on the possibility of placing the SPEU on the buildings of the hydroelectric power station, it was revealed that in order to increase the adaptability of the revitalized even large hydro system with a separate building of the hydroelectric power station, it is preferable to place power transformers from the downstream side. It is noted that according to the results of the schematic study for the medium-pressure hydroelectric complex Lagdo in the north of Cameroon, the placement of solar cells will provide an additional 6.95% of the capacity of the operating hydroelectric power station.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 840-863
Author(s):  
Hugo Algarvio

Global warming contributes to the worldwide goal of a sustainable carbon-neutral society. Currently, hydroelectric, wind and solar power plants are the most competitive renewable technologies. They are limited to the primary resource availability, but while hydroelectric power plants (HPPs) can have storage capacity but have several geographical limitations, wind and solar power plants have variable renewable energy (VRE) with stochastic profiles, requiring a substantially higher investment when equipped with battery energy storage systems. One of the most affordable solutions to compensate the stochastic behaviour of VRE is the active participation of consumers with demand response capability. Therefore, the role of citizen energy communities (CECs) can be important towards a carbon-neutral society. This work presents the economic and environmental advantages of CECs, by aggregating consumers, prosumers and VRE at the distribution level, considering microgrid trades, but also establishing bilateral agreements with large-scale VRE and HPPs, and participating in electricity markets. Results from the case-study prove the advantages of CECs and self-consumption. Currently, CECs have potential to be carbon-neutral in relation to electricity consumption and reduce consumers’ costs with its variable term until 77%. In the future, electrification may allow CECs to be fully carbon-neutral, if they increase their flexibility portfolio.


Author(s):  
Konstantin S. Fediy ◽  
Sergey A. Vstovskiy ◽  
Igor S. Fedorchenko ◽  
Evgeny A. Spirin

The disadvantage of hydroelectric dams is the flooding and a material breach of the ecology of the region, therefore the use of such hydroelectric power station is reasonable when no alternative method of providing the required power. In this regard, in most cases, it is advisable to use free-flow microelectric power plants. Free-threaded micro hydropower plants constitute a power unit mounted in the flow of the river. The main difference between free-flow microelectric power plants and dams is the use of kinetic energy of the flow, rather than potential. This makes it possible to eliminate the need for earthworks and the construction of additional hydraulic structures. Free-threaded micro hydropower plants can be grouped, forming a cascade of micro hydro. In order to increase the reliability of free-flow microelectric power plants, the design tends to use low-speed generators with rotation speeds from 140 to 650 rpm, which can significantly simplify or completely eliminate the transmission mechanism


2021 ◽  
Vol 249 ◽  
pp. 427-440
Author(s):  
Yaroslav Shklyarskiy ◽  
Daniel Díaz Guerra ◽  
Emiliia Iakovleva ◽  
Anton Rassõlkin

Cuba is traditionally considered a country with an underdeveloped industry. The share of the mining and metallurgical industries in the gross industrial production of the republic is small – about 3 % of GDP. The development of deposits and the extraction of nickel ores is an important sector of the economy of the Republic of Cuba, since the largest reserves of nickel and cobalt on the North American continent are located on the territory of the country. The development of the country energy system can serve as a growth factor in this sector of the economy. Due to climatic features and impossibility of integrating new capacities into the energy system through the construction of hydroelectric power plants, solar energy is a promising direction. Determining the feasibility of using solar tracking systems to increase the generation of electricity from solar power plants is one of the main challenges faced by engineers and renewable energy specialists. Currently, there are no solar tracking systems in Cuba that can provide information to assess the effectiveness of this technology in the country. The lack of the necessary technologies, as well as the high cost of developing solar power plants with tracking systems, limit the widespread introduction of such complexes. Hence follows the task of creating an inexpensive experimental model that allows assessing the effectiveness of tracking systems in specific weather conditions of the Republic of Cuba. This model will allow in future to increase the efficiency of electrical complexes with solar power plants, which provide power supply to the objects of the mineral resource complex and other regions.


2020 ◽  
Vol 144 ◽  
pp. 126-135
Author(s):  
Evgenii S. Khristoforov ◽  
◽  
Konstantin K. Il’kovskii ◽  

Technologies for converting solar energy into electrical energy are constantly improved, new methods of using solar energy are emerging in order to increase efficiency and save space. One of such methods is application of special buoyancy modules and restraints systems for installing solar power plants in water basins. The main technologies and operation principle of floating solar power plants (SPP) are described. Advantages and disadvantages of using floating solar power plants in comparison with ground-based solar power plants are listed and substantiated. Assessment of potential of installing floating SPP at hydroelectric power plants (HPP) in Russia is given. Prospects for the use of floating SPP in open water areas are discussed and examples of such projects are listed.


Author(s):  
Zh. K. Kassymbekov ◽  
G. Zh. Kassymbekov

The goal of the project is to develop and use a hydrocyclone sand trap to improve the operation of a mini hydroelectric power station. In contrast to the existing design of a similar type of hydroelectric power station, a bulky sump for water purification has been replaced with an efficient hydrocyclone device. Due to this, a simplification of the design of the HPP is achieved, an increase in the degree of sand collection from the composition of the water used. Research methods. The initial data for the calculation were taken: the flow rate of water passing through the hydrocyclone and the pressure drop at the inlet and outlet of the hydrocyclone. Computer simulation of the process was carried out using the SolidWorks software (flow simulation). The main technological parameters and a rational mode of operation were established by testing experimental samples both in laboratory and in production conditions. Research results. In the established mode, the density of clarified water is equal to 1.009 ... 1.050 t / m3, and the degree of purification is 91 ... 97%. Replacing a bulky reinforced concrete sump with hydrocyclone sand traps of a simplified design reduces the cost of building a water treatment unit from 30% (existing) to 7%. This makes it possible to expand the volume of development of small hydroelectric power plants, especially in mountainous conditions.


Author(s):  

This article presents the results of the assessment of production and destruction processes in the ecosystem of the Kharanorsk reservoir-cooler, used as a cooling pond of the Kharanorsk hydroelectric power station. The content of dissolved oxygen in the water of the reservoir is ubject to seasonal dynamics corresponding to biochemical processes occurring in the reservoir. In spring and autumn, the concentration of dissolved oxygen is in the range from 12.6 to 14.2 mg / L. We attribute the decrease in oxygen content in the summer month to 9.6 mg / L with an increase in air temperature and with the thermal effect of thermal power plants, which in total lead to an intensification of the processes of biochemical decomposition of organic and oxidation of mineral substances. High production capabilities of the ecosystem in both the central and littoral zones were found in July in the surface horizons of the water column (3.53 mgO2 / L – littoral; 3.92 mgO2 / L – center). The formation of organic matter in the direction “surface horizon - bottom layers” of the water column in the central zone decreases due to a decrease in the transparency of the water column. The cessation of the production of organic matter by phytoplankton in the bottom layers of the littoral zone we associate with the competitive relationship of bottom organisms in the use of nutrients. It has been established that the rate of daily production increases from April to July and begins to fall in October, but remains high relative to spring indicators in both the central and littoral zones of the reservoir. The studies are necessary for subsequent environmental monitoring studies, as well as for making managerial decisions to maintain the sustainability of the reservoir ecosystem.


Author(s):  
T. N. Nguyen ◽  
V. D. Sizov ◽  
M. P. Vu ◽  
T. T. H. Cu

Vietnam is a country of a great solar potential; solar technology is growing rapidly in Vietnam and investors are very interested in building solar power plants. Construction of the rooftop solar power stations can help owners reduce monthly electricity costs and even get economic benefits by selling excess electricity coming from a solar power plant (PV) to the utility grid. In this study, the design results of a rooftop grid-tied solar power station with the capacity of 26 kWp for a commercial building were introduced to have a basis to assess the operation ability of solar power station under solar radiation conditions in Hanoi city, Vietnam. The simulation results using the PVsyst program have made it possible to calculate the solar energy potential in Hanoi city, the power generation and efficiency of the grid-tied solar power station. Solar power has been applied in Vietnam since the 1990s but is mainly used for areas that were far from national power grid such as mountainous areas, islands. Small scale grid-tied solar power has been developed since 2010 and mainly is used for residential applications or small and medium scale consumers. The total capacity of electricity produced by solar power plants in Vietnam by 2017 was only about 8 MW; this value is very low as compared to the potential of solar power in Vietnam. This is due to the absence of the government support for the policy of developing solar power. In accordance with the current roadmap of raising electricity prices in Vietnam, construction investment of rooftop solar power stations is economically feasible while contributing to environmental protection and counteracting climate change phenomenon by reducing the amount of CO2 emitted into the environment.


Sign in / Sign up

Export Citation Format

Share Document