THE INFLUENCE OF OPERATION CONDITIONS OF HYDROELECTRIC POWER PLANTS THE CHOICE OF THE MAIN PARAMETERS OF THE SUCTION PIPES

2015 ◽  
Vol 5 (4) ◽  
pp. 86-92 ◽  
Author(s):  
Mikhail Ivanovich BALZANNIKOV

Considered run-of-river hydropower plants (HPP). Notes the importance of technical-economic calculations in the justifi cation of large water-conducting elements of the path these types of HPP. The methodology of economic substantiation of the expediency of increasing the length of the draft tube. Using the technique of the calculations for lowpressure hydroelectric run-of-river type. The results of the analysis of the influence of the operating conditions of the hydroelectric power station on basic geometrical parameters of draft tube.

Author(s):  
Konstantin S. Fediy ◽  
Sergey A. Vstovskiy ◽  
Igor S. Fedorchenko ◽  
Evgeny A. Spirin

The disadvantage of hydroelectric dams is the flooding and a material breach of the ecology of the region, therefore the use of such hydroelectric power station is reasonable when no alternative method of providing the required power. In this regard, in most cases, it is advisable to use free-flow microelectric power plants. Free-threaded micro hydropower plants constitute a power unit mounted in the flow of the river. The main difference between free-flow microelectric power plants and dams is the use of kinetic energy of the flow, rather than potential. This makes it possible to eliminate the need for earthworks and the construction of additional hydraulic structures. Free-threaded micro hydropower plants can be grouped, forming a cascade of micro hydro. In order to increase the reliability of free-flow microelectric power plants, the design tends to use low-speed generators with rotation speeds from 140 to 650 rpm, which can significantly simplify or completely eliminate the transmission mechanism


Author(s):  
V. V. Slabunov ◽  
◽  
A. A. Kirilenko ◽  
O. V. Voyevodin ◽  
◽  
...  

Purpose: to assess the technological and regulatory and technical capabilities of developing and applying power supply complexes using the energy of water flow, in relation to Russian standards to meet the electricity needs of decentralized reclamation (irrigation) systems. Materials and methods. Scientific and technical materials of Russian and foreign authors, as well as the regulatory and technical base of the Russian Federation were used as the initial data. The information processing methods were comparison, analogy, classification and systematization. Results and discussion. Among various design features of the hydropower equipment under consideration, capable of meeting local needs for electricity and at the same time having the ability to combine with elements of an irrigation network (based on relative dimensions, shape, efficiency, etc.), micro-hydroelectric power plants stand out: with propeller, radial axial, axial and capsule hydraulic turbine. The most effective schemes for installing hydraulic turbines are horizontal direct-flow and vertical Z-shaped ones. Analysis of the register of standards in the field of technical regulation in the sphere of hydropower showed that out of 131 standards under consideration, 106 can be partially applied to micro hydropower plants. Providing low-power hydropower facilities with standardization documentation has a priority in the direction of operation (21 %), monitoring and state control (19 %), and repair and reconstruction (19 %). Conclusions. The functioning of a micro-hydroelectric power station based on the energy of water movement provides for the use of a set of design solutions, which requires additional study in order to be linked to the elements of reclamation (irrigation) systems. The scope of the considered standardization documents can be extended to small hydropower facilities, taking into account the specific features of their operation. In this regard, there is a need for the development of scientifically grounded provisions of existing or being developed regulatory documents.


Author(s):  
Petro Lezhnyuk ◽  
Iryna Hunko ◽  
Juliya Malogulko ◽  
Iryna Kotylko ◽  
Lіudmyla Krot

Urgency of the research. Current trends of distributed generation development in Ukraine indicate a rapid generation in-crease from renewable energy plants. Most developed countries gradually refuse from the fossil fuels use and invest more and more to the “green” energy. Therefore, there is a need for a detailed study of the operation conditions of distributed energy sources due to their instability, as well as the processes that arise in distribution electric networks with diverse types of distributed energy sources. Target setting. In the producing process of power energy by distributed energy sources due to the increase in their num-ber, there are situations where several renewable sources of energy operate to only one system of buses. Thus, such distributive networks acquire the features of a local power system, which complicates the control process of such systems, and also there is a problem with the electricity supply of consumers. Actual scientific researches and issues analysis. The analysis of publications suggests that in literature more attention is paid to studying the operating modes of solar power plants, or small hydroelectric power plants. However, almost no attention was paid to the study of their cooperation work. Uninvestigated parts of general matters defining. Only a few works are devoted to the study of the cooperation of the diverce sources of distributed energy sources in the local electrical systems. That is why, their impact on power distribution networks and on the grid in general has not been studied extensively. The research objective. In this article was considered the influence of asynchronous generators on small hydroelectric power plants on the operation modes of distribution electrical networks, and were investigated the processes that are occurring in local power systems with different types of distributed energy sources. The statement of basic materials. Based on the research results, was developed a computer model of a such system in the PS CAD software environment. Two solar stations and one small hydroelectric power station with an asynchronous generator were connected to the power supply. It was shown the simulation of two modes of operation: a joint operation of a small hydroelectric power station, two solar power stations and a power supply center; a joint operation of a small hydroelectric pow-er plant, two solar power stations and a power supply disconnected. Conclusions. As a result of computer simulation, it is shown that by switching on a small hydroelectric power plant with an asynchronous generator in the case of an emergency shutdown of centralized power supply, it is possible to restore the work of solar power plants, and thus partially or completely restore the power supply of consumers.


2021 ◽  
Vol 11 (2) ◽  
pp. 62-66
Author(s):  
Sergey V. EVDOKIMOV ◽  
Alexey A. ROMANOV ◽  
Boris G. IVANOV

The experience of operation of surface emergency gates in ice-breaking conditions at a number of hydroelectric power plants has shown the insuffi cient eff ectiveness of the methods used to combat freezing of structures. The rules for technical operation of spillway dam gates in winter provide for heating of structures by slots, threshold and skin in conjunction with measures to maintain mines before construction. However, measures to heat gates and build mines are not always suffi ciently justifi ed and justifi ed. In order to obtain full-scale data and scientifi c information for the development of recommendations on operating and accounting modes during design, full-scale studies of stresses and defl ections in the load-bearing elements of the watershed gate of the hydroelectric power station were carried out. This article presents the results of fi eld studies in comparison with calculated values. As a result of the studies, information on the static operation of fl at gates in winter conditions is obtained, which is of theoretical and practical interest. The materials can be used to clarify technical operation rules and to clarify regulatory documents for the design of hydromechanical equipment at hydroelectric power stations.


2018 ◽  
Vol 8 (12) ◽  
pp. 2505 ◽  
Author(s):  
Jean Decaix ◽  
Vlad Hasmatuchi ◽  
Maximilian Titzschkau ◽  
Cécile Münch-Alligné

Due to the integration of new renewable energies, the electrical grid undergoes instabilities. Hydroelectric power plants are key players for grid control thanks to pumped storage power plants. However, this objective requires extending the operating range of the machines and increasing the number of start-up, stand-by, and shut-down procedures, which reduces the lifespan of the machines. CFD based on standard URANS turbulence modeling is currently able to predict accurately the performances of the hydraulic turbines for operating points close to the Best Efficiency Point (BEP). However, far from the BEP, the standard URANS approach is less efficient to capture the dynamics of 3D flows. The current study focuses on a hydraulic turbine, which has been investigated at the BEP and at the Speed-No-Load (SNL) operating conditions. Several “advanced” URANS models such as the Scale-Adaptive Simulation (SAS) SST k - ω and the BSL- EARSM have been considered and compared with the SST k - ω model. The main conclusion of this study is that, at the SNL operating condition, the prediction of the topology and the dynamics of the flow on the suction side of the runner blade channels close to the trailing edge are influenced by the turbulence model.


2019 ◽  
Vol 114 ◽  
pp. 01006
Author(s):  
Gleb Mayorov ◽  
Valery Stennikov ◽  
Eugene Barakhtenko

The current technological infrastructure in the electricity, heat, cold, and gas supply, as a rule, is formed and controlled separately by local systems and tasks. The traditionally considered energy systems unite large energy sources, such as hydroelectric power station, combined heat and power plants, boiler plants, and electric and pipeline networks distributed over a large area. New trends in the energy sector necessitate a revision of the principles of construction of energy systems and the creation of integrated energy supply systems. Combining separate different types of systems of different levels into a single integrated system with many coordinated elements can contribute to the implementation of new functionality, the use of more advanced technologies in operation and the active participation of consumers with distributed generation in the energy supply process. For the study of integrated energy supply systems it is proposed to use a multiagent approach, which is one of the promising areas of research for complex systems. This approach is used in many subject areas to study systems that include many elements with complex behavior. Such systems include integrated energy supply systems. The solution of the problem on the basis of the agent approach is developed by a multitude of interrelated agents.


Author(s):  
Mikhail Balzannikov

The article describes run-of-the-river hydroelectric power plants. The authors specify the importance of performing technical and economic calculations in justifying the large-sized units of the water-supplying channel of a run-of-the-river hydroelectric power plant: turbine pits and suction (discharge) pipes. The study shows that the amount of construction work and the total cost of building a hydroelectric power plant depend on the size of these water supply units. The research objective is to analyze the validity of establishing the main dimensions of the suction pipes for modern technical and economic conditions. The researchers use the discounted income method. The calculations are performed for a hydroelectric power plant with an elbow suction pipe. The analysis of how the operating conditions of a hydroelectric power plant influence the savings of construction resources is carried out. The analysis shows that saving construction resources by reducing the length of the suction pipe is justified if the hydroelectric power plamt is designed to work only at peak power loads. For hydroelectric power plants operating at semi-peak or base power loads, the additional construction costs would be appropriate if leading to the decrease in pressure loss and to the increase in electricity generation.


2021 ◽  
pp. 57-65
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK

The issues of solving modern problems related to meeting the energy needs of environmental hydraulic engineering are considered. The problem of improving the methodological basis for choosing the optimal arrangement of elements of photovoltaic devices (SPEU) on the blocks of the dam building of hydroelectric power plants (HPP) of 4 main types is formulated. The graphical dependences of the estimation of the power ratio of the combined SPEU and HPP on the diameter of the turbine wheel are analyzed. As a result of the analysis of the influence of the location of the transformer on the possibility of placing the SPEU on the buildings of the hydroelectric power station, it was revealed that in order to increase the adaptability of the revitalized even large hydro system with a separate building of the hydroelectric power station, it is preferable to place power transformers from the downstream side. It is noted that according to the results of the schematic study for the medium-pressure hydroelectric complex Lagdo in the north of Cameroon, the placement of solar cells will provide an additional 6.95% of the capacity of the operating hydroelectric power station.


2021 ◽  
pp. 67-74
Author(s):  
O. N. CHERNYH ◽  
◽  
A. V. BURLACHENKO ◽  
V. V. VOLSHANIK ◽  
U. H. UMARU HAMANJODA

The results of the assessment and analysis of the operating modes of the power complex with the constructive and technological combination of hydraulic power plants (HPPs) with solar power plants (SFEU) in the presence of seasonal or daily regulation in the environmental hydro system are presented. The aspects of the operation of a hydroelectric power station with non-self-regulating derivation are considered in detail: when working in a load schedule with a maximum power equal to the installed one, and when the average daily power along the watercourse is approaching the provided one. It was found that in the first case, the influence of the SPEU regime on the joint work with the hydroelectric power station is to move a part of the load graph of the hydroelectric power plant with the maximum power to the base part of the schedule. In the second case, the influence of the SPEU mode consists in changing the variable part of the load graph, but the HPP, in contrast to the first case, retains its position in the load graph of the power system. The mode of operation of the hydroelectric power station becomes more uniform and at the same time, a smaller volume of the daily regulation basin (DRB) is required. For the example considered, the maximum power of the hydroelectric power station during the day increased from 50 MW to 54 MW. It has been revealed that even with the production of SPEU in 18% of the daily production of hydroelectric power plants, the volume of DRB is required approximately two times less. As a result, it is possible to increase the operating head at the hydroelectric power station and obtain the corresponding effect on power and electricity generation.


2017 ◽  
Vol 35 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Alina Kowalczyk-Juśko ◽  
Andrzej Mazur ◽  
Antoni Grzywna ◽  
Agnieszka Listosz ◽  
Roman Rybicki ◽  
...  

AbstractHydropower plants in Poland currently use only 19% of the river’s energy potential. Development of hydropower is limited by environmental regulations as well as by economic grounds. From the environmental point of view, it is desirable to build small hydropower plants integrated into the local landscape. This paper presents results of the research aimed at estimating the amount of energy that could be produced in the case of small hydroelectric power plants on weirs existing on the Tyśmienica River. There is also a legal framework that should be adapted at hydropower development. It was calculated that the technical capacity of the small hydropower plants that could be built on 4 existing weirs, is 0.131 MW. These power plants could produce 786 MWh of electricity per year. The economic efficiency of this production is currently difficult to assess, because a new support system for renewable energy sources is currently being implemented, which will be a decisive factor for entrepreneurs. It should be borne in mind that potential investments will be made in protected areas within the Natura 2000 network, which may limit their constructing or impose the obligation to assess their impact on selected environmental elements. Location within the protective area does not eliminate such investments, especially when solutions with the least possible environmental impact are used.


Sign in / Sign up

Export Citation Format

Share Document