scholarly journals Balancing reliability and maintenance cost rate of multi-state components with fault interval omission

2018 ◽  
Vol 21 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Wenjie Dong ◽  
Sifeng Liu ◽  
Xiaoyu Yang ◽  
Huan Wang ◽  
Zhigeng Fang
Keyword(s):  
Author(s):  
Qingan Qiu ◽  
Baoliang Liu ◽  
Cong Lin ◽  
Jingjing Wang

This paper studies the availability and optimal maintenance policies for systems subject to competing failure modes under continuous and periodic inspections. The repair time distribution and maintenance cost are both dependent on the failure modes. We investigate the instantaneous availability and the steady state availability of the system maintained through several imperfect repairs before a replacement is allowed. Analytical expressions for system availability under continuous and periodic inspections are derived respectively. The availability models are then utilized to obtain the optimal inspection and imperfect maintenance policy that minimizes the average long-run cost rate. A numerical example for Remote Power Feeding System is presented to demonstrate the application of the developed approach.


Author(s):  
Xinlong Li ◽  
Yan Ran ◽  
Genbao Zhang

Preventive maintenance is an important means to extend equipment life and improve equipment reliability. Traditional preventive maintenance decision-making is often based on components or the entire system, the granularity is too large and the decision-making is not accurate enough. The meta-action unit is more refined than the component or system, so the maintenance decision-making based on the meta-action unit is more accurate. Therefore, this paper takes the meta-action unit as the research carrier, considers the imperfect preventive maintenance, based on the hybrid hazard rate model, established the imperfect preventive maintenance optimization model of the meta-action unit, and the optimization solution algorithm was given for the maintenance strategy. Finally, through numerical analysis, the validity of the model is verified, and the influence of different maintenance costs on the optimal maintenance strategy and optimal maintenance cost rate is analyzed.


2019 ◽  
Vol 11 (10) ◽  
pp. 2748
Author(s):  
Changping Zhao ◽  
Xiaojiang Xu ◽  
Yu Gong ◽  
Houming Fan ◽  
Haojia Chen

The blue carbon cooperation is a joint effort of the countries along the Maritime Silk Road (MSR) to utilize marine activities and organisms to absorb and store carbon dioxide in the atmosphere, an initiative that has great strategic value for coping with the most important environmental problems in the 21st century and promoting the building of a community with shared aspirations for mankind’s future. This research combines the decision-making structure model with the reality of the blue carbon cooperation game of the MSR to make conditional assumptions and carry out model construction. It uses the simulation method to test the influencing factors such as decision-maker type, initial input cost, continuous input maintenance cost, rate of return, carbon tax rate and others. The results suggest that initial and continuous input costs, returns, and neighbor subsidies have positive impacts on blue carbon cooperation, while carbon tax rates and income discount rates have negative impacts on blue carbon cooperation. To promote blue carbon cooperation along the MSR, emphasis should be placed on the design of incentive and subsidy mechanisms, together with the appropriate punishment mechanisms.


Author(s):  
Akihiro Yamane ◽  
Kodo Ito ◽  
Yoshiyuki Higuchi

Social infrastructures such as roads and bridges are indispensable for our lives. They have to be maintained continuously and such maintenance has become a big issue in Japan. Social infrastructures are maintained under strict restrictions such as decreasing in local finance revenue and scarcity of skilful engineers. Various kinds of factors such as inspection periods, maintenance costs, and degradation levels, are necessary to consider in establishing efficient maintenance plans of social infrastructures. Furthermore, the special circumstances of social infrastructures such as the delay of constructions which is caused by the scarcity of budget, must be discussed for the efficient maintenance plan. For such discussion, the stochastic cost model which contains preventive and corrective maintenances is useful. Although these models have been studied in mechanical and electronic systems, unique characteristics of social infrastructures such as their enormous scale and delays due to maintenance budget restrictions must be considered when such social infrastructure models are discussed. In this paper, we establish maintenance models of infrastructures which some of preventive maintenance must be prolonged. The expected maintenance cost rate is established using the cumulative damage model and optimal policies which minimizes them are considered. Three basic models and their extended models which consider natural disasters are discussed.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Fesa Putra Kristianto ◽  
Bobby O.P. Soepangkat

PT X Tuban Plant has four plants (unit), namely Tuban I, Tuban II, Tuban III and Tuban IV. Each unit plant has three sub units, i.e., Crusher Operations Sub-Unit, Raw Mill, Kiln and Coal Mill (RKC) Sub-Unit and Finish Mill Sub-Unit. RKC 3 Sub-Unit in Tuban III has the highest number of equipment downtime and production loss. Therefore, it was necessary to optimize the time interval of preventive maintenance ( ) and total labor force as part of the company maintenance policy, would also fulfill the required reliability and availability of RKC 3 Sub-Unit. There were two steps in determining Tp optimum. The first step was to obtain the best distribution of the time between failures (TBF) and time to repair (TTR). The next step was to iterate the operating time (Ti) and Tp to determine the minimum preventive maintenance cost rate, reliability and maintainability.This iteration was applied to sub-units of RKC 3 that possesses a series system. Tp at the lowest rate of maintenance costs was the optimum Tp. The optimum Tp for RKC 3 Sub-Unit is 3743,28 hour. The preventive maintenance cost rate for optimum Tp is Rp33.100/hour and the reliability and availability of sub unit are 96,7% and 99,86% respectively.Keywords: reliability, availability, preventive maintenance cost rate, and preventive maintenance


Author(s):  
Cleison Henrique de Paula ◽  
Willian Moreira Duarte ◽  
Thiago Torres Martins Rocha ◽  
Raphael Nunes de Oliveira ◽  
Antônio Augusto Torres Maia

In this work, a cascade refrigeration system operating with four different ecological refrigerant pairs was modeled. This system uses R744 (Carbon dioxide) in the low-temperature cycle and operates with R290 (propane), R1234yf (2,3,3,3-tetrafluoropropene), R152a (1,1-difluorethane), and R717 (ammonia) in the high-temperature cycle. Energetic, exergetic, environmental, and economic performance of the cascade system was investigated to determine the most appropriate ecological refrigerant couple. The parameters used in each mentioned performance were COP (Coefficient of Performance), [Formula: see text] (Exergy Efficiency), TEWI (Total Equivalent Warming Impact), ECOP (Ecological coefficient of performance), and [Formula: see text] (Total plant cost rate), respectively. The results showed that the cascade refrigeration system operating with R744/R717 provided the best performance for the thermodynamic conditions analyzed, presenting a COP of 2.10, [Formula: see text] of 56.9%, [Formula: see text] of 24 334 USD/year, ECOP of 4.86, and TEWI of 25.67 tons of CO2. Finally, evaluating the total plant cost rate of this cascade system, it was noted that the capital and maintenance cost rate [Formula: see text] corresponds to 89.1% of the [Formula: see text] value, the operational cost rate [Formula: see text] corresponds to 10.27% of the [Formula: see text] value and the environmental cost rate [Formula: see text] corresponds to 0.63% of [Formula: see text].


Author(s):  
Khac Tuan Huynh ◽  
Antoine Grall

Most condition-based imperfect maintenance models developed over the last few decades are memoryless in the sense that maintenance efficiency is completely [Formula: see text]-independent of previous interventions. However, many maintenance activities exhibit their past dependency in engineering practice, and this significant property should not be ignored in maintenance modeling. In this spirit, our aim is to develop a condition-based maintenance model for continuously deteriorating systems subject to a special kind of past-dependent imperfect repairs. Such a repair can put the system back to a deterioration level better than the one at just before the current repair, but worse than the one reached at the last repair. Besides, inspection and replacement are memoryless actions available for the system. They result in different effects on the system deterioration and incur different costs. To achieve high economic performances in the long term, these actions are coordinated into a control-limit deterioration-based maintenance policy. Its long-run maintenance cost rate is analytically evaluated using the semi-regenerative process theory. Numerous sensitivity studies to maintenance costs and to system characteristics give a thorough understanding about the policy behavior. Furthermore, comparisons with more classical policies justify the importance of incorporating the past dependency in maintenance modeling.


2013 ◽  
Vol 401-403 ◽  
pp. 2345-2348
Author(s):  
Hai Fei Diao ◽  
Jing Cai ◽  
Yu Fu ◽  
Hai Bin Lin ◽  
Xiang Zhang

With the development of Condition-Based Maintenance, there is an urgent need for failure dependence of redundant components in parallel system. In this paper, Markov maintenance cost decision analysis based on failure dependence of components was put forward, moreover, maintenance cost optimal model of parallel system with cost rate was established, meanwhile, the minimum cost rate as well as corresponding optimal detection interval was obtained. Finally, failure dependence and dependent failure rate to parallel system maintenance cost optimal model were studied and realized to prove this theory.


Author(s):  
David Kimera ◽  
Fillemon Nduvu Nangolo

This article proposes a stochastic technique for determining the optimal maintenance policy for marine mechanical systems. The optimal maintenance policy output includes the average maintenance cost rate, maintenance interval and the performance thresholds for the three marine mechanical system classifications. The purpose of this study is to optimize maintenance, maintenance interval and performance thresholds based on maintenance and reliability data of the marine mechanical systems. Performance threshold and maintenance interval are used as the decision variables to determine the optimal maintenance policy. A stochastic model based on probability analysis is developed to trigger the maintenance action for mechanical systems. The model is later coded in MATLAB. Maintenance and failure data for a marine vehicle were statistically fitted using ReliaSoft, from which a three-parameter Weibull distribution best fitted all the mechanical system classifications. Model inputs were based on both the maintenance data and expert knowledge of the maintenance crew. Based on a 20-year marine vehicle life span, the optimal maintenance costs for plant and machinery are relatively the same. The model predicted annual total maintenance cost of US$183,029.24 is 11.11% more than the maintenance cost derived from experts’ threshold of US$164,726. Marine vehicle machinery presents a higher maintenance interval of 3.23 years compared to 2.92 years for marine vehicle plants. It was observed that for the performance thresholds greater than 84.54%, there is an insignificant difference between the plant and machinery maintenance costs. Sensitivity analysis results suggest there is little justification that changing maintenance costs will have an impact on the performance threshold [Formula: see text] and maintenance interval [Formula: see text]. A maintenance interval of 3 years results in a lower total annual maintenance cost deviation of 2.66% from the optimal total annual maintenance cost.


Author(s):  
Abdelkader Rami ◽  
Habib Hamdaoui ◽  
Houari Sayah ◽  
Abdelkader Zeblah

This paper combines the universal generating function UGF with harmony search (HSO) meta-heuristic optimization method to solve a preventive maintenance (PM) problem for series-parallel system. In this work, we consider the situation where system and its components have several ranges of performance levels. Such systems are called multi-state systems (MSS). To enhance system availability or (reliability), possible schedule preventive maintenance actions are performed to equipments and affect strongly the effective age. The MSS measure is related to the ability of the system to satisfy the demand. The objective is to develop an algorithm to generate an optimal sequence of maintenance actions providing system working with the desired level of availability or (reliability) during its lifetime with minimal maintenance cost rate. To evaluate the MSS system availability, a fast method based on UGF is suggested. The harmony search approach can be applied as an optimization technique and adapted to this PM optimization problem.


Sign in / Sign up

Export Citation Format

Share Document