scholarly journals Assembly of a Phenylalanine Nanotube by the use of Molecular Dynamics Manipulator

Author(s):  
I.V. Likhachev ◽  
V.S. Bystrov

Studies of the processes of self-organization and self-assembly of various complexly organized (including spiral) structures based on amino acids intensively carried out in recent years. Various methods of molecular modeling, including molecular dynamics (MD) methods, are developed. In this paper, we propose a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure: a molecular dynamic manipulator (MD manipulator). It is an imitation of the operation of an existing or imaginary device or structure by applying force to the existing initial structure in order to obtain a new final structure, having the same chemical composition, but with a different geometry (topology). The PUMA-CUDA software package was applied as the main MD modeling program, which uses the physics of the PUMA software package, developed by the laboratory headed by N.K. Balabaev. Using this MDS tool, you can investigate the formation of helical structures from a linear sequence of any amino acids variation. As an example, the applicability of the developed algorithm for assembling nanotubes from linear phenylalanine (Phe) chains of different chirality (left L-Phe and right D-Phe) is considered by including additional force effects in the molecular dynamics simulation program for these structures. During the MD run, the applied actions, which are the same for the left and right helices of the formed nanotubes, lead the system to an α-helix structure. The work was carried out in an interactive mode using a number of additional programs, incl. trajectory analyzer program MD (TAMD). As a result, the modes that are most adequate for the formation of nanotubes of the right chirality D from the initial L-Phe monomer and nanotubes of the left chirality L from the D-Phe amino acid monomer were determined. The results obtained were compared with data from other works on modeling similar nanotubes of different chirality and experimental data. These are fully in line with the law of change in sign of chirality of molecular structures with complication of their hierarchical level of organization. The molecular animation of the assembly of a left-chiral nanotube from D-monomers is freely available at: http://lmd.impb.ru/Supplementary/PHE.avi.

Biochemistry ◽  
2002 ◽  
Vol 41 (46) ◽  
pp. 13556-13569 ◽  
Author(s):  
Vincenzo De Filippis ◽  
Giorgio Colombo ◽  
Ilaria Russo ◽  
Barbara Spadari ◽  
Angelo Fontana

2018 ◽  
Vol 20 (48) ◽  
pp. 30525-30536 ◽  
Author(s):  
Sahin Uyaver ◽  
Helen W. Hernandez ◽  
M. Gokhan Habiboglu

Common structures identified in the assembly of aromatic amino acids and their mixtures include the four-fold tube (a and b) and the zig-zag structure (c and d).


2021 ◽  
Vol 874 ◽  
pp. 88-95
Author(s):  
Oktavianus Hendra Cipta ◽  
Anita Alni ◽  
Rukman Hertadi

The structure of Candida rugosa lipase can be affected by solvents used in the enzymatic reactions. Using molecular dynamics simulation as a tool to study the Candida rugosa lipase structure, we studied the effect of various solvent systems, such as water, water-methanol, and water-methanol-ionic liquid. These solvent systems have been chosen because lipase is able to function in both aqueous and non-aqueous medium. In this study, pyridinium (Py)-based ionic liquids were selected as co-solvent. The MD simulation was run for 50 nanoseconds for each solvent system at 328 K. In the case of water-methanol-ionic liquids solvent systems, the total number of the ionic liquids added were varied: 222, 444, and 888 molecules. Water was used as the reference solvent system. The structure of Candida rugosa lipase in water-methanol system significantly changed from the initial structure as indicated by the RMSD value, which was about 6.4 Å after 50 ns simulation. This value was relatively higher compared to the other water-methanol solvent system containing ionic liquid as co-solvent, which were 2.43 Å for 4Py-Br, 2.1 Å for 8Py-Br, 3.37 Å for 4Py-BF4 and 3.49 Å for 8Py-BF4 respectively. Further analysis by calculating the root mean square fluctuation (RMSF) of each lipase residue found that the presence of ionic liquids could reduce changes in the enzyme structure. This happened because the anion component of the ionic liquid interacts relatively more strongly with residues on the surface of the protein as compared to methanol, thereby lowering the possibility of methanol to come into contact with the protein.


Soft Matter ◽  
2021 ◽  
Author(s):  
Natthiti Chiangraeng ◽  
Ukrit Keyen ◽  
Norio Yoshida ◽  
Piyarat Nimmanpipug

Self-assembly responsiveness to stimuli of polystyrene-block-polyisoprene (PS-b-PI) diblock copolymer materials are explored by means of classical molecular dynamics (MD) and dissipative particle dynamics (DPD) simulations. A concerted relationship between the...


2020 ◽  
Vol 49 (42) ◽  
pp. 14891-14907
Author(s):  
Sedigheh Abedanzadeh ◽  
Kazem Karami ◽  
Mostafa Rahimi ◽  
Masoud Edalati ◽  
Mozhgan Abedanzadeh ◽  
...  

Synthesis, characterization, spectroscopic, biological, and molecular modeling studies on the DNA/BSA binding interactions of new cyclometallated Pd(ii) complexes bearing α-amino acids were investigated.


2007 ◽  
Vol 121-123 ◽  
pp. 1053-1056
Author(s):  
Guo Rong Zhong ◽  
Qiu Ming Gao

Molecular dynamics simulation of the solidification behavior of liquid nickel nanowires has been carried out based on the embedded atom potential with different cooling rates. The nanowires constructed with a face-centered cubic structure and a one-dimensional (1D) periodical boundary condition along the wire axis direction. It is found that the final structure of Ni nanowires strongly depend on the cooling rates during solidification from liquid. With decreasing cooling rates the final structure of the nanowires varies from amorphous to crystalline via helical multi-shelled structure.


2015 ◽  
Vol 817 ◽  
pp. 803-808 ◽  
Author(s):  
Jian Wei Zhang ◽  
Cai Jiang ◽  
Gang Shi ◽  
Da Zhi Jiang

Buckypaper based polymer composites provides a new technical approach toward realizing conductive/structural multifunctional composites. Resin infiltration in the buckypaper is critical for the fabrication of buckypaper/polymer composites. To investigate the micro-infusion process of the polymer inside the paper, molecular dynamics (MD) simulations are conducted to study the diffusion behavior of epoxy molecules on the modified graphene and between graphene layers. The graphene molecular structures are constructed to represent the wall structures of the carbon nanotubes. Diffusion coefficients of the epoxy molecules on the graphene modified with different functionalization densities and interlayer distances are calculated. The results indicate that the functional groups increase the interfacial interactions between the epoxy molecules and graphene, however, largely decrease the diffusion speeds of the epoxy molecule. The simulations on the graphene layer systems indicate that, the viscous resistance of the resin is the main factor for retarding the diffusion of the epoxy molecules for the unmodified graphene layers; while for the modified graphene layers, functional groups are the main factor for retarding the resin diffusion


RSC Advances ◽  
2014 ◽  
Vol 4 (105) ◽  
pp. 60741-60748 ◽  
Author(s):  
Naresh Thota ◽  
Yijia Ma ◽  
Jianwen Jiang

Molecular dynamics simulation is reported for the self-assembly of short amphiphilic peptides FmDn and FmKn.


Sign in / Sign up

Export Citation Format

Share Document