Tailored digitization with real-time locating systems

atp magazin ◽  
2021 ◽  
Vol 63 (03) ◽  
pp. 76-83
Author(s):  
Andreas Löcklin ◽  
Kai Przybysz-Herz ◽  
Tamás Ruppert ◽  
Robert Libert ◽  
László Jakab ◽  
...  

We are seeing a boom in the use of real-time position data to automate and optimize tasks in the field of production and logistics. Here we consider the reasons for this, show what has already proven to be industrially viable and give an overview of six current research efforts. We show which use cases have been automated by RTLS and where RTLS could play a role to further optimize production processes or material flows in the future.

Author(s):  
S.B. Kudryashev ◽  
◽  
N.S. Assev ◽  
R.D. Belashov ◽  
V.A. Naumenko ◽  
...  

The article is devoted to solving one of the most important problems of the development of the sugar industry in Russia – the modernization of sugar production processes. Today, sugar production is actively being modernized, shifting most of its processes to the path of avomatization and optimization to improve the quality of products. This article describes one of the main ways to obtain information about the concentration of sucrose in syrup in the production of sugar.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1148
Author(s):  
Jewgeni H. Dshalalow ◽  
Ryan T. White

In a classical random walk model, a walker moves through a deterministic d-dimensional integer lattice in one step at a time, without drifting in any direction. In a more advanced setting, a walker randomly moves over a randomly configured (non equidistant) lattice jumping a random number of steps. In some further variants, there is a limited access walker’s moves. That is, the walker’s movements are not available in real time. Instead, the observations are limited to some random epochs resulting in a delayed information about the real-time position of the walker, its escape time, and location outside a bounded subset of the real space. In this case we target the virtual first passage (or escape) time. Thus, unlike standard random walk problems, rather than crossing the boundary, we deal with the walker’s escape location arbitrarily distant from the boundary. In this paper, we give a short historical background on random walk, discuss various directions in the development of random walk theory, and survey most of our results obtained in the last 25–30 years, including the very recent ones dated 2020–21. Among different applications of such random walks, we discuss stock markets, stochastic networks, games, and queueing.


Author(s):  
Elizabeth M. Borycki ◽  
Andre W. Kushniruk ◽  
Ryan Kletke ◽  
Vivian Vimarlund ◽  
Yalini Senathirajah ◽  
...  

Objectives: This paper describes a methodology for gathering requirements and early design of remote monitoring technology (RMT) for enhancing patient safety during pandemics using virtual care technologies. As pandemics such as COrona VIrus Disease (COVID-19) progress there is an increasing need for effective virtual care and RMT to support patient care while they are at home. Methods: The authors describe their work in conducting literature reviews by searching PubMed.gov and the grey literature for articles, and government websites with guidelines describing the signs and symptoms of COVID-19, as well as the progression of the disease. The reviews focused on identifying gaps where RMT could be applied in novel ways and formed the basis for the subsequent modelling of use cases for applying RMT described in this paper. Results: The work was conducted in the context of a new Home of the Future laboratory which has been set up at the University of Victoria. The literature review led to the development of a number of object-oriented models for deploying RMT. This modeling is being used for a number of purposes, including for education of students in health infomatics as well as testing of new use cases for RMT with industrial collaborators and projects within the smart home of the future laboratory. Conclusions: Object-oriented modeling, based on analysis of gaps in the literature, was found to be a useful approach for describing, communicating and teaching about potential new uses of RMT.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ania Syrowatka ◽  
Masha Kuznetsova ◽  
Ava Alsubai ◽  
Adam L. Beckman ◽  
Paul A. Bain ◽  
...  

AbstractArtificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.


2021 ◽  
pp. 147612702110120
Author(s):  
Siavash Alimadadi ◽  
Andrew Davies ◽  
Fredrik Tell

Research on the strategic organization of time often assumes that collective efforts are motivated by and oriented toward achieving desirable, although not necessarily well-defined, future states. In situations surrounded by uncertainty where work has to proceed urgently to avoid an impending disaster, however, temporal work is guided by engaging with both desirable and undesirable future outcomes. Drawing on a real-time, in-depth study of the inception of the Restoration and Renewal program of the Palace of Westminster, we investigate how organizational actors develop a strategy for an uncertain and highly contested future while safeguarding ongoing operations in the present and preserving the heritage of the past. Anticipation of undesirable future events played a crucial role in mobilizing collective efforts to move forward. We develop a model of future desirability in temporal work to identify how actors construct, link, and navigate interpretations of desirable and undesirable futures in their attempts to create a viable path of action. By conceptualizing temporal work based on the phenomenological quality of the future, we advance understanding of the strategic organization of time in pluralistic contexts characterized by uncertainty and urgency.


Sign in / Sign up

Export Citation Format

Share Document