scholarly journals Thermal Factor of Aluminium High pressure Die Casting Container (Mould) to achieve Six Sigma Quality of Castings

Author(s):  
Suraj R Marathe ◽  
Dr. Carmo Quadros ◽  
2010 ◽  
Vol 649 ◽  
pp. 473-479 ◽  
Author(s):  
Jenő Dúl ◽  
Richárd Szabó ◽  
Attila Simcsák

Quality of high pressure die castings is influenced by a lot of factors. Among them, the most important ones are the melt-, and die temperatures. This paper shows a data acquisition system, developed for measuring the melt and die temperatures and the results of the temperature measurements obtained under variable conditions. Evaluation of the relationship between the interrelated temperatures and the casting properties is based on analyzing the structure of the castings.


2013 ◽  
Vol 765 ◽  
pp. 195-199
Author(s):  
Shou Xun Ji ◽  
Bo Jiang ◽  
Wen Chao Yang ◽  
Zhong Yun Fan

Melt quenched high pressure die casting (MQ-HPDC) is a new die casting process developed recently for improving the casting quality of the conventional HPDC process. In the MQ-HPDC process, an alloy melt with a specified dose and superheat is quenched by directly pouring the alloy melt into a preheated metallic container. The thermal mass and preheating temperature of the container is selected so that the alloy melt is quenched just below the alloy liquidus and heterogeneous nucleation takes place during the melt quenching. The quenched alloy melt is then fed immediately into the shot sleeve for component casting. In this paper we present the MQ-HPDC process and the resultant microstructures and mechanical properties of a MQ-HPDC A356 alloy.


Materials ◽  
2003 ◽  
Author(s):  
Weilong Chen

In recent years, high-pressure die-casting magnesium components have been gaining currency worldwide because of the excellent properties that magnesium alloys can offer to meet new product requirements. With the increasing application of magnesium parts worldwide, many research and development projects have been carried out to advance HPDC technology. However, truly optimized mold design and production of defect free castings remains a challenge for die casters. For many HPDC magnesium products, especially those specified for porosity-free and high cosmetic requirement, the challenge not only comes form a lack of a deeper understanding of how molten magnesium alloys fill the mold cavity and form defects, but also from improper preliminary part design. This study proposes a virtual prototyping system that integrates several effective soft and hardware tools for both the part and mold-design engineer to evaluate part manufacturability. Also, investigated in this study are the major causes of those defects that are the predominant cause of rejection of thin walled, leak-free magnesium parts requiring highly cosmetic finishes.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 39
Author(s):  
Anders E. W. Jarfors ◽  
Ruslan Sevastopol ◽  
Karamchedu Seshendra ◽  
Qing Zhang ◽  
Jacob Steggo ◽  
...  

Today, tool life in high pressure die casting (HPDC) is of growing interest. A common agreement is that die life is primarily decided by the thermal load and temperature gradients in the die materials. Conformal cooling with the growth of additive manufacturing has raised interest as a means of extending die life. In the current paper, conformal cooling channels’ performance and effect on the thermal cycle in high-pressure die casting and rheocasting are investigated for conventional HPDC and semisolid processing. It was found that conformal cooling aids die temperature reduction, and the use of die spray may be reduced and support the die-life extension. For the die filling, the increased temperature was possibly counterproductive. Instead, it was found that the main focus for conformal cooling should be focused to manage temperature around the in-let bushing and possibly the runner system. Due to the possible higher inlet pressures for semisolid casting, particular benefits could be seen.


Author(s):  
Rengen Ding ◽  
Haibo Yang ◽  
Shuzhi Li ◽  
Guodong Wu ◽  
Jiahao Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document