scholarly journals Detection of Meat Species Substitution in Some Ready to Eat Beef-Based Meat Products in Egypt

Author(s):  
Bassant H. Elsheikh ◽  
Riyad R. Shawish ◽  
Zakaria H. Elbayoumi
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 426
Author(s):  
Yun-Hsiu Hsu ◽  
Wei-Cheng Yang ◽  
Kun-Wei Chan

The identification of animal species of meat in meat products is of great concern for various reasons, such as public health, religious beliefs, food allergies, legal perspectives, and bushmeat control. In this study, we developed a new technique to identify Formosan Reeves’ muntjac in meat using recombinase polymerase amplification (RPA) in combination with a lateral flow (LF) strip. The DNA extracted from a piece of Formosan Reeves’ muntjac meat was amplified by a pair of specific primers based on its mitochondrial cytochrome b gene for 10 min at a constant temperature ranging from 30 to 45 °C using RPA. Using the specific probe added to the RPA reaction system, the amplified products were visualized on the LF strip within 5 min. The total operating time from quick DNA extraction to visualizing the result was approximately 30 min. The RPA-LF system we designed was efficient when using boiled, pan-fried, roasted, stir-fried, or stewed samples. The advantages of simple operation, speediness, and cost-effectiveness make our RPA-LF method a promising molecular detection tool for meat species identification of either raw or variously cooked Formosan Reeves’ muntjac meat. It is also possible to apply this method to identify the meat of other wildlife sources.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1577
Author(s):  
Klaudia Kotecka-Majchrzak ◽  
Natalia Kasałka-Czarna ◽  
Agata Sumara ◽  
Emilia Fornal ◽  
Magdalena Montowska

Consumer demand for both plant products and meat products enriched with plant raw materials is constantly increasing. Therefore, new versatile and reliable methods are needed to find and combat fraudulent practices in processed foods. The objective of this study was to identify oilseed species-specific peptide markers and meat-specific markers that were resistant to processing, for multispecies authentication of different meat and vegan food products using the proteomic LC-MS/MS method. To assess the limit of detection (LOD) for hemp proteins, cooked meatballs consisting of three meat species and hemp cake at a final concentration of up to 7.4% were examined. Hemp addition at a low concentration of below 1% was detected. The LOD for edestin subunits and albumin was 0.9% (w/w), whereas for 7S vicilin-like protein it was 4.2% (w/w). Specific heat-stable peptides unique to hemp seeds, flaxseed, nigella, pumpkin, sesame, and sunflower seeds, as well as guinea fowl, rabbit, pork, and chicken meat, were detected in different meat and vegan foods. Most of the oilseed-specific peptides were identified as processing-resistant markers belonging to 11S globulin subunits, namely conlinin, edestin, helianthinin, pumpkin vicilin-like or late embryogenesis proteins, and sesame legumin-like as well as 2S albumins and oleosin isoforms or selected enzymic proteins.


2021 ◽  
Vol 36 ◽  
pp. 06044
Author(s):  
Nadezhda Momot ◽  
Yulia Kolina ◽  
Igor Kamliya ◽  
Svetlana Terebova ◽  
Tatiana Timofeeva

Carrying out a sanitary and veterinary expertise is a mandatory requirement which is necessary for the admission of livestock products, meat in particular, to sale. When carrying veterinary and sanitary expertise we often come up the attempts of meat products adulteration, for example when livestock meat is replaced to wild one and vice versa. Most often such adulteration cases are the results of illegal hunting. The purpose of our work is study horse and Manchurian wapiti carcasses anatomic features. The main methods of meat species determine are analysis of carcass appearance, organoleptic parameters analysis, laboratory tests as well as analysis and feature examination of anatomic structure of the inspected carcass. To determine meat species we applied methods of comparative and anatomic examination, organoleptic parameters analysis of meat samples, and laboratory tests. The suggested methods of examination can be used not only for determination of the whole animal carcasses species, but for small parts of the body. It is of great importance in conducting forensic and veterinary researches, when the number of parts can be finite. Maximal efficiency can be achieved only with complex use of enumerated methods.


2019 ◽  
Vol 283 ◽  
pp. 367-374 ◽  
Author(s):  
Katarzyna Nalazek-Rudnicka ◽  
Ilona Kłosowska-Chomiczewska ◽  
Andrzej Wasik ◽  
Adam Macierzanka
Keyword(s):  

2018 ◽  
Vol 25 (1) ◽  
pp. 38-46
Author(s):  
Aysun Türkanoǧlu Özçelik ◽  
Semiramis Yılmaz ◽  
Sevda Gökbora ◽  
Mehmet İnan

Meat is one of the most important basic foodstuffs in human nutrition. Nowadays, adulteration and authenticity are common problems for meat products. Identification of meat species is important in terms of consumer protection and prevention of adulteration. There are different methods to determine adulteration of meat and meat products. These methods are histological controls, serological tests, and quantitative polymerase chain reaction. In this study, species identification and quantification analysis of meat and meat products were done by using horse-, donkey-, and bovine-specific primers with quantitative polymerase chain reaction method. Triple meat mixtures containing horse and donkey meat ranging from 0.1 to 50% levels were prepared within a bovine mixture for using species identification and quantification analysis. The method specificity was confirmed by melting curve analysis. In conclusion, quantitative polymerase chain reaction is an easy, rapid, and reliable method for meat species identification, and with this study an applicable method was developed for the detection and quantification of equine-originated meat in bovine meat products.


Food Control ◽  
2013 ◽  
Vol 32 (2) ◽  
pp. 440-449 ◽  
Author(s):  
Donna-Mareè Cawthorn ◽  
Harris A. Steinman ◽  
Louwrens C. Hoffman

Thrita ◽  
2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Peyman Gholamnezhad ◽  
Hamed Ahari ◽  
Gholamreza Nikbakht Brujeni ◽  
Seyed Amir Ali Anvar ◽  
Abbas Ali Motalebi

Background: Real-time polymerase chain reaction (PCR) and high-resolution melting (HRM) analysis are currently considered as reliable techniques for the species identification of meat-based products and widely used to detect meat adulteration. Objectives: To examine the validity of real-time PCR and HRM analysis to identify meat species in meat-based products. Methods: Meat samples from five species (i.e., cattle, sheep, chicken, turkey, and wild pig) were purchased. Minced meat from the animal species of interest was prepared at the purities of 10%, and 20% and also were prepared as single and mixtures of two species. For molecular assessments, DNA samples were extracted from all the meat samples and subjected to real-time PCR by amplifying a mitochondrial cytochrome b specific for each species. Results: All the meat species studied in this research were successfully detected in the mixed meat samples when separately examined by real-time PCR. High-resolution melting analysis showed that all the meat species of interest were efficiently distinguished when examined simultaneously. Conclusions: The data presented here shows that the real-time PCR and HRM analysis are reliable methods for the identification of meat species used in meat products.


Sign in / Sign up

Export Citation Format

Share Document