scholarly journals Taking into account the efficiency of turbine plant flow path compartments in design calculations of their energy characteristics

Vestnik IGEU ◽  
2019 ◽  
pp. 62-68
Author(s):  
K.N. Bubnov ◽  
A.E. Barochkin ◽  
V.P. Zhukov ◽  
G.V. Ledukhovsky

Development of regulatory energy characteristics of TPP equipment is a mandatory and resource-intensive proce-dure. A mathematical model of the turbine plant (the turbine plant itself and its regenerative feed water heating system) was developed earlier based on the matrix formalization of calculations of the energy and mass exchange installations. The analysis of the modeling results has shown that the model adequately de-scribes the real characteristics of a turbine plant only at low bleeding load. At higher load, the accuracy of description is much lower and the model cannot be used for practical analysis of real equipment. All this means that the turbine model needs to be refined by introducing stage-dependent efficiency indicators for more accurate determination of the equipment energy characteristics and, based on them, developing of computer aided methods for optimizing regimes of technological systems and sub-systems of thermal power plants. Methods of mathematical programming were used to investigate the multi-flow heat and mass exchange systems and sub-systems of thermal power plants on the basis of heat and mass balance equations. The energy characteristics and efficiency indicators of TPP equipment were determined in accordance with the existing normative approach. The turbine plant model has been refined by the matrix formalization method by introducing stage-dependent efficiency indicators. Model solutions have been obtained and analysed in order to calculate energy characteristics of the combined cycle turbine plant. The calculaiton results have been compared with the energy characteristics of a turbine unit in operation. It has been shown that the proposed approach is reliable and reasonable. The obtained results can be used for increasing the validity degree of equipment energy characteristics calculation, creating computer simulators and software tools for optimizing modes of technological systems and subsystems of heat power plants.

Author(s):  
Stephan Heide ◽  
Christian Felsmann ◽  
Uwe Gampe ◽  
Sven Boje ◽  
Bernd Gericke ◽  
...  

Existing solar thermal power plants are based on steam turbine cycles. While their process temperature is limited, solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature. Therefore there is potential to improve the efficiency of future solar thermal power plants. Solar based heat input to substitute fuel requires specific GT features. Currently the portfolio of available GTs with these features is restricted. Only small capacity research plants are in service or in planning. Process layout and technology studies for high solar share GT systems have been carried out and have already been reported by the authors. While these investigations are based on a commercial 10MW class GT, this paper addresses the parameterization of high solar share GT systems and is not restricted to any type of commercial GT. Three configurations of solar hybrid GT cycles are analyzed. Besides recuperated and simple GT with bottoming Organic Rankine Cycle (ORC), a conventional combined cycle is considered. The study addresses the GT parameterization. Therefore parametric process models are used for simulation. Maximum electrical efficiency and associated optimum compressor pressure ratio πC are derived at design conditions. The pressure losses of the additional solar components of solar hybrid GTs have a different adversely effect on the investigated systems. Further aspects like high ambient temperature, availability of water and influence of compressor pressure level on component design are discussed as well. The present study is part of the R&D project Hybrid High Solar Share Gas Turbine Systems (HYGATE) which is funded by the German Ministry for the Environment, Nature and Nuclear Safety and the Ministry of Economics and Technology.


2021 ◽  
Vol 7 (1) ◽  
pp. 26-31
Author(s):  
Taras Kravets ◽  
◽  
Yevhen Miroshnychenko ◽  
Andrii Kapustianskyi ◽  
◽  
...  

Boiler units at Ukrainian thermal power plants need to be modernized or replaced in the short run, as this is important for the national energy security. The authors determined one of possible ways to improve the efficiency indicators of coal-fired boiler units and power generating units as a whole up to the values exceeding the design ones. This variant of improvement consists in abandoning the technology of using flue gas as drying agent in pulverized coal systems and replacing it with direct discharge of the gas flow into the boiler furnace. Numerous computations were carried out to study the change of efficiency indicators and manoeuvrability of power generating units due to the replacement of the ball mill pulverizing system using flue gases for coal drying with the scheme including ball-and-race mills that use hot air as drying agent.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa ◽  
Luiz Augusto Horta Nogueira ◽  
Electo E. Silva Lora

The operational rules for the electricity markets in Latin America are changing at the same time that the electricity power plants are being subjected to stronger environmental restrictions, fierce competition and free market rules. This is forcing the conventional power plants owners to evaluate the operation of their power plants. Those thermal power plants were built between the 1960’s and the 1990’s. They are old and inefficient, therefore generating expensive electricity and polluting the environment. This study presents the repowering of thermal power plants based on the analysis of three basic concepts: the thermal configuration of the different technological solutions, the costs of the generated electricity and the environmental impact produced by the decrease of the pollutants generated during the electricity production. The case study for the present paper is an Ecuadorian 73 MWe power output steam power plant erected at the end of the 1970’s and has been operating continuously for over 30 years. Six repowering options are studied, focusing the increase of the installed capacity and thermal efficiency on the baseline case. Numerical simulations the seven thermal power plants are evaluated as follows: A. Modified Rankine cycle (73 MWe) with superheating and regeneration, one conventional boiler burning fuel oil and one old steam turbine. B. Fully-fired combined cycle (240 MWe) with two gas turbines burning natural gas, one recuperative boiler and one old steam turbine. C. Fully-fired combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. D. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. The gas turbine has water injection in the combustion chamber. E. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners and one old steam turbine. The gas turbine has steam injection in the combustion chamber. F. Hybrid combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners, one old steam boiler burning natural gas and one old steam turbine. G. Hybrid combined cycle (235 MWe) with one gas turbine burning diesel fuel, one recuperative boiler with supplementary burners, one old steam boiler burning fuel oil and one old steam turbine. All the repowering models show higher efficiency when compared with the Rankine cycle [2, 5]. The thermal cycle efficiency is improved from 28% to 50%. The generated electricity costs are reduced to about 50% when the old power plant is converted to a combined cycle one. When a Rankine cycle power plant burning fuel oil is modified to combined cycle burning natural gas, the CO2 specific emissions by kWh are reduced by about 40%. It is concluded that upgrading older thermal power plants is often a cost-effective method for increasing the power output, improving efficiency and reducing emissions [2, 7].


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Stefano Giuliano ◽  
Reiner Buck ◽  
Santiago Eguiguren

Selected solar-hybrid power plants for operation in base-load as well as midload were analyzed regarding supply security (dispatchable power due to hybridization with fossil fuel) and low CO2 emissions (due to integration of thermal energy storage). The power plants were modeled with different sizes of solar fields and different storage capacities and analyzed on an annual basis. The results were compared to each other and to a conventional fossil-fired combined cycle in terms of technical, economical, and ecological figures. The results of this study show that in comparison to a conventional fossil-fired combined cycle, the potential to reduce the CO2 emissions is high for solar-thermal power plants operated in base-load, especially with large solar fields and high storage capacities. However, for dispatchable power generation and supply security it is obvious that in any case a certain amount of additional fossil fuel is required. No analyzed solar-hybrid power plant shows at the same time advantages in terms of low CO2 emissions and low levelized electricity cost (LEC). While power plants with solar-hybrid combined cycle (SHCC®, Particle-Tower) show interesting LEC, the power plants with steam turbine (Salt-Tower, Parabolic Trough, CO2-Tower) have low CO2 emissions.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052019
Author(s):  
A V Egorov ◽  
Yu F Kaizer ◽  
A V Lysyannikov ◽  
A V Kuznetsov ◽  
Yu N Bezborodov ◽  
...  

Abstract The purpose of this work is to estimate the energy costs for the utilization of carbon dioxide generated by thermal power plants operating on various types of fuel by the liquefaction method as part of a turbo-expander installation, as well as a general assessment of the efficiency of the TPP during the utilization of carbon dioxide. The energy costs for the liquefaction of carbon dioxide in the turbo-expander unit from the combustion products of thermal power plants running on coal, natural gas and heating oil differ slightly and amount to about 5 MJ/kg of fuel burned. The practical application of purification of combustion products of thermal power plants from carbon dioxide by the liquefaction method as part of a turboexpander installation is possible as part of combined-cycle power plants with a simultaneous reduction in electrical efficiency by more than 10 % to a level of less than 50 %.


Author(s):  
T. Mita ◽  
N. Ando ◽  
A. Kawauchi ◽  
K. Morikawa

A fully-fired combined cycle power plant (FFCCPP) combines a steam thermal power plant with a gas turbine. Hot exhaust gases fed from the gas turbine are used as combustion air for the boiler, thus increasing total plant output and efficiency. An unusually hot spell in Japan in the summer of 1990 brought about such a rapid surge in power demand for air conditioning so that all electric power companies registered record highs in consumption. This promoted Chubu Electric Power Co. to decide to add a 154-MW gas turbine to each of its six existing steam thermal power plants (four 700-MW and two 375-MW units), thus repowering their system into an FFCCPP. Construction work began in 1992. In September, 1994, two 700-MW steam thermal power plants (Chita Thermal Power Plant’s No. 6 unit and Chita Second Thermal Power Plant’s No. 1 unit) were modified into FFCCPPs, which then began operating in a trouble-free manner. This paper reports the characteristics and test-run results of the above two plants, which have been operating in good condition as the largest-capacity FFCCPPs in the world.


Author(s):  
G. Gnädig ◽  
K. Reyser ◽  
W. Fischer ◽  
J. Schmidli

Stricter environmental regulations and the need for high-efficiency energy generation have led an increasing number of industrial users to investigate alternatives to burning waste gases from the industrial plants in conventional thermal power plants. Combined cycle power plants using gas turbines capable of burning low-caloric fuels such as blast furnace gas can meet these requirements with thermal efficiencies of more than 45%.


Author(s):  
G. Scarabello ◽  
S. Rech ◽  
A. Lazzaretto ◽  
A. Christidis ◽  
G. Tsatsaronis

The prospect of clean electrical energy generation has recently driven to massive investments on renewable energies, which in turn has affected operation and profits of existing traditional thermal power plants. In this work several coal-fired and combined cycle power units are simulated under design and off-design conditions to adequately represent the behavior of all modern thermal units included in the German power system. A dynamic optimization problem is then solved to estimate the short-run profits obtained by these units using the spot prices of the German electricity market (EEX) in years 2007–2010. The optimization model is developed using a Mixed Integer Linear Programming approach to take the on-off status into account and reduce computational effort. New market scenarios with increasing renewable shares (and consequently different spot prices) are finally simulated to analyze the consequences of a larger capacity of renewable energies on the optimal operation of traditional thermal power plants.


2015 ◽  
Vol 2015 (3) ◽  
pp. 40-51
Author(s):  
Леонид Пугач ◽  
Leonid Pugach ◽  
Павел Куницын ◽  
Pavel Kunitsyn ◽  
Александр Стребков ◽  
...  

The problems of optimizing and automating the process of calculating the thermal schemes steam-turbine plants. The possibility of using different means of software Mathcad for calculation of the energy and mass balance of energy units. Investigated the matrix method for solving equations of heat balance diagrams of steam-turbine plants.


Sign in / Sign up

Export Citation Format

Share Document