Isolation, Molecular Identification and in vitro Antibiotic Susceptibility Testing of Mycoplasma agalactiae From Goats in Two Provinces of Kurdistan Region-Iraq.

2015 ◽  
Vol 17 (3) ◽  
pp. 127-136
Author(s):  
Rizgar R. Sulaiman ◽  
2008 ◽  
Vol 52 (9) ◽  
pp. 3092-3098 ◽  
Author(s):  
Marie Desnos-Ollivier ◽  
Stéphane Bretagne ◽  
Dorothée Raoux ◽  
Damien Hoinard ◽  
Françoise Dromer ◽  
...  

ABSTRACT Mutations in two specific regions of the Fks1 subunit of 1,3-β-d-glucan synthase are known to confer decreased caspofungin susceptibility on Candida spp. Clinical isolates of Candida spp. (404 Candida albicans, 62 C. tropicalis, and 21 C. krusei isolates) sent to the French National Reference Center were prospectively screened for susceptibility to caspofungin in vitro by the broth microdilution reference method of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing (AFST-EUCAST). Twenty-eight isolates (25 C. albicans, 2 C. tropicalis, and 1 C. krusei isolate) for which the caspofungin MIC was above the MIC that inhibited 90% of the isolates of the corresponding species (MIC90) were subjected to molecular analysis in order to identify mutations in the fks1 gene. Substitutions in the deduced protein sequence of Fks1 were found for 8 isolates, and 20 isolates had the wild-type sequence. Among the six C. albicans isolates harboring mutations, six patterns were observed involving amino acid changes at positions 641, 645, 649, and 1358. For C. tropicalis, one isolate showed an L644W mutation, and for one C. krusei isolate, two mutations, L658W and L701M, were found. Two media, RPMI medium and AM3, were tested for their abilities to distinguish between isolates with wild-type Fks1 and those with mutant Fks1. In RPMI medium, caspofungin MICs ranged from 0.25 to 2 μg/ml for wild-type isolates and from 1 to 8 μg/ml for mutant isolates. A sharper difference was observed in AM3: all wild-type isolates were inhibited by 0.25 μg/ml of caspofungin, while caspofungin MICs for all mutant isolates were ≥0.5 μg/ml. These data demonstrate that clinical isolates of C. albicans, C. tropicalis, and C. krusei with decreased susceptibility to caspofungin in vitro have diverse mutations in the fks1 gene and that AM3 is potentially a better medium than RPMI for distinguishing between mutant and wild-type isolates using the AFST-EUCAST method.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 187 ◽  
Author(s):  
Christine Unterweger ◽  
Lukas Schwarz ◽  
Martina Jelocnik ◽  
Nicole Borel ◽  
René Brunthaler ◽  
...  

Due to various challenges in diagnosing chlamydiosis in pigs, antibiotic treatment is usually performed before any molecular or antibiotic susceptibility testing. This could increase the occurrence of tetracycline-resistant Chlamydia (C.) suis isolates in the affected pig population and potentiate the reoccurrence of clinical signs. Here, we present a case of an Austrian pig farm, where tetracycline resistant and sensitive C. suis isolates were isolated from four finishers with conjunctivitis. On herd-level, 10% of the finishers suffered from severe conjunctivitis and sows showed a high percentage of irregular return to estrus. Subsequent treatment of whole-herd using oxytetracycline led to a significant reduction of clinical signs. Retrospective antibiotic susceptibility testing revealed tetracycline resistance and decreased susceptibility to doxycycline in half of the ocular C. suis isolates, and all isolates were able to partially recover following a single-dose tetracycline treatment in vitro. These findings were later confirmed in vivo, when all former clinical signs recurred three months later. This case report raises awareness of tetracycline resistance in C. suis and emphasizes the importance of preventative selection of tetracycline resistant C. suis isolates.


2020 ◽  
Vol 13 (9) ◽  
pp. 1947-1954
Author(s):  
Swati Sahay ◽  
Krithiga Natesan ◽  
Awadhesh Prajapati ◽  
Triveni Kalleshmurthy ◽  
Bibek Ranjan Shome ◽  
...  

Background and Aim: Respiratory infection due to Mannheimia haemolytica and Pasteurella multocida are responsible for huge economic losses in livestock sector globally and it is poorly understood in ovine population. The study aimed to investigate and characterize M. haemolytica and P. multocida from infected and healthy sheep to rule out the involvement of these bacteria in the disease. Materials and Methods: A total of 374 healthy and infected sheep samples were processed for isolation, direct detection by multiplex PCR (mPCR), and antibiotic susceptibility testing by phenotypic and genotypic methods. Results: Overall, 55 Pasteurella isolates (27 [7.2%] M. haemolytica and 28 [7.4%] P. multocida) were recovered and identified by bacteriological tests and species-specific PCR assays. Significant correlation between the detection of M. haemolytica (66.6%) with disease condition and P. multocida (19.1%) exclusively from infected sheep was recorded by mPCR. In vitro antibiotic susceptibility testing of 55 isolates revealed higher multidrug resistance in M. haemolytica (25.9%) than P. multocida (7.1%) isolates. Descending resistance towards penicillin (63.6%), oxytetracycline (23.6%), streptomycin (14.5%), and gentamicin (12.7%) and absolute sensitivity towards chloramphenicol were observed in both the pathogens. The antibiotic resistance genes such as strA (32.7%) and sul2 (32.7%) associated with streptomycin and sulfonamide resistance, respectively, were detected in the isolates. Conclusion: The study revealed the significant involvement of M. haemolytica together with P. multocida in ovine respiratory infection and is probably responsible for frequent disease outbreaks even after vaccination against hemorrhagic septicemia in sheep population of Karnataka, southern province of India.


mSphere ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Anand V. Sastry ◽  
Nicholas Dillon ◽  
Amitesh Anand ◽  
Saugat Poudel ◽  
Ying Hefner ◽  
...  

Antibiotic resistance is an imminent threat to global health. Patient treatment regimens are often selected based on results from standardized antibiotic susceptibility testing (AST) in the clinical microbiology lab, but these in vitro tests frequently misclassify drug effectiveness due to their poor resemblance to actual host conditions.


2000 ◽  
Vol 30 (3) ◽  
pp. 444-453 ◽  
Author(s):  
D. S. Smith ◽  
P. Lindholm-Levy ◽  
G. A. Huitt ◽  
L. B. Heifets ◽  
J. L. Cook

Sign in / Sign up

Export Citation Format

Share Document