EFFICIENT IRRIGATION SYSTEMS AND IRRIGATION SCHEDULING FOR PROCESSING TOMATO: THE CHALLENGE

1999 ◽  
pp. 479-486 ◽  
Author(s):  
C.J. Phene
2020 ◽  
Author(s):  
Niels Schuetze ◽  
Oleksandr Mialyk

<p>Due to climate change, extreme weather conditions such as droughts may have an increasing impact on the water demand and the productivity of irrigated agriculture. For the adaptation to changing climate conditions, the value of information about irrigation control strategies, future climate development, and soil conditions for the operation of deficit irrigation systems is evaluated. To treat climate and soil variability within one simulation-optimization framework for irrigation scheduling, we formulated a probabilistic framework that is based on Monte Carlo simulations. The framework can support decisions when full, deficit, and supplemental irrigation strategies are applied. For the analysis, the Deficit Irrigation Toolbox (DIT) is applied for locations in arid and semi-arid climates. It allows the analysis of the impact of information on (i) different scheduling methods (ii) different crop models, (iii) climate variability using recent and future climate scenarios, and (iv) soil variability. The provided results can serve as an easy-to-use support tool for decisions about the value of climate and soil data and/or a cost-benefit analysis of farm irrigation modernization on a local scale.</p>


2021 ◽  
Author(s):  
Niels Schuetze

<p>Due to climate change, extreme weather conditions such as droughts may have an increasing impact on the water demand and the productivity of irrigated agriculture. For the purpose of adaptation to changing climate conditions, the value of information about irrigation control strategies, future climate development and soil conditions for the operation of deficit irrigation systems is evaluated. To treat climate and soil variability within one simulation optimization framework for irrigation scheduling we formulated a probabilistic framework that is based on Monte Carlo simulations. The framework can support decisions when full, deficit and supplemental irrigation strategies are applied. For the a global analysis the Deficit Irrigation Toolbox (DIT) is now adapted for a global analysis using ERA5 reanalysis data and large ensemble CESM scenarios for the global climate . It allows the analysis of the impact of information of (i) different scheduling methods (ii) different crop models, (iii) climate variability using recent and future climate scenarios. The results show a prove of concept which facilitates the development of an easy-to-use support tool for decisions about the value of management, climate and soil data and/or a cost benefit analysis of farm irrigation on a local scale.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Juan Enciso ◽  
John Jifon ◽  
Juan Anciso ◽  
Luis Ribera

Selection of the proper irrigation method will be advantageous to manage limited water supplies and increase crop profitability. The overall objective of this study was to evaluate the effect of subsurface drip irrigation (SDI) and furrow irrigation on onion yield and irrigation use efficiency. This study was conducted in two locations, a commercial field and a field located at the Texas A&M AgriLife Research Center in Weslaco, TX. This study was conducted as a split-plot design for both sites with two treatments (SDI and furrow irrigation) and three replications per treatment. The total onion yield obtained with the SDI systems was more than 93% higher than the yield obtained with furrow irrigation systems. The large onion size was 181% higher for the SDI system than the furrow system in both sites. The colossal size yield was also higher. At one site colossal yield was 206% higher than furrow, while at another site furrow yielded no colossal onions and SDI had some production. It was concluded that drip irrigation systems more than double yields and increased onion size while using almost half of the water. This was due to SDI allowing for more frequent and smaller irrigation depths with higher irrigation efficiency than furrow irrigation systems.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 586 ◽  
Author(s):  
Eszter Nemeskéri ◽  
András Neményi ◽  
András Bőcs ◽  
Zoltán Pék ◽  
Lajos Helyes

Measurement of physiological traits can be used to monitor plant water status, for irrigation scheduling or to predict the expected yield in open-field production of vegetables. This study evaluates the changes in stomatal conductance, chlorophyll fluorescence (Fv/Fm), relative chlorophyll content (SPAD), and canopy temperature at different stages of development of processing tomato to show their relationships with the yield and quality under well-irrigated, deficit irrigated, and non-irrigated conditions. Under non-irrigated conditions, during flowering with fruit setting and early fruit development the highest canopy temperature, lowest stomatal conductance, and Fv/Fm were measured, while the SPAD value was the highest. Under this condition, the correlation between the SPAD value, fruit weight, and marketing yield was positive, but it was negative with the total soluble solid (°Brix). During flowering with fruit setting, under deficit irrigation conditions a close significant positive correlation was found between the SPAD value and the fruit weight, marketing yield, and vitamin C content of fruits. During this period, under regularly irrigated conditions, the SPAD, Fv/Fm, and canopy temperature related to stomatal conductance. Stomatal conductance had significant influence on yield and quality under non-irrigated and well-irrigated conditions while the SPAD value and canopy temperature had significant influence on under deficit irrigated conditions.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1088 ◽  
Author(s):  
Huimeng Zhang ◽  
Guanhua Huang ◽  
Xu Xu ◽  
Yunwu Xiong ◽  
Quanzhong Huang

Accurate estimation of crop evapotranspiration (ET) is critical for agricultural water resource management and proper irrigation scheduling. The 2-year field experimental data of processing tomato under plastic-mulched drip and basin irrigation in the Hetao Irrigation District (Hetao), located in the upper reaches of the Yellow river, were used to calibrate and validate the SIMDualKc model. The model adopted the Food and Agriculture Organization (FAO) dual Kc method for partitioning ET into plant transpiration and soil evaporation. The results showed a good agreement between soil water observations and simulations throughout the growing seasons with a low error estimate and high model efficiency. The calibrated basal potential crop coefficients for the initial stage, mid-season stage, and late stage were 0.30, 0.92, and 0.60, respectively. ET during the two growing seasons was in the range of 284–331 mm for basin irrigation and 266–310 mm for drip irrigation. The average soil evaporation accounted for 5% of ET in 2015 and 14% of ET in 2016 for drip irrigation treatments, while it accounted for 4% and 13% of ET for basin irrigation treatments in the two experimental years, indicating that transpiration was the dominant component of ET of processing tomato under plastic mulch in Hetao. The highest water productivity was obtained from the drip irrigation treatment. The SIMDualKc model is an appropriate tool to estimate crop ET and may be further used to improve local irrigation scheduling for processing tomato in the upper reaches of the Yellow river.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1157a-1157
Author(s):  
Mark Freeman ◽  
Dale Handley

Much technology concerning efficient use of agricultural energy and water is available. However, this technology is underutilized by many growers because of inadequate training. This Extension program educates growers about evaluating irrigation systems, soil and water problems, irrigation scheduling, and energy use (of pumps). The program uses different communication tools to create awareness in growers, and then encourage adoption. These tools include in-depth surveys, condensed written material, small group discussions, and videotapes. The program also coordinates efforts among various governmental and private agencies.


2011 ◽  
Vol 14 (1) ◽  
pp. 136-151 ◽  
Author(s):  
N. Schütze ◽  
M. de Paly ◽  
U. Shamir

The scarcity of water compared with the abundance of land constitutes the main drawback within agricultural production. Besides the improvement of irrigation techniques a task of primary importance is solving the problem of intra-seasonal irrigation scheduling under limited seasonal water supply. An efficient scheduling algorithm has to take into account the crops' response to water stress at different stages throughout the growing season. Furthermore, for large-scale planning tools compact presentations of the relationship between irrigation practices and grain yield, such as crop water production functions, are often used which also rely on an optimal scheduling of the considered irrigation systems. In this study, two new optimization algorithms for single-crop intra-seasonal scheduling of deficit irrigation systems are introduced which are able to operate with general crop growth simulation models. First, a tailored evolutionary optimization technique (EA) searches for optimal schedules over a whole growing season within an open-loop optimization framework. Second, a neuro-dynamic programming technique (NDP) is used for determining optimal irrigation policy. In this paper, different management schemes are considered and crop-yield functions generated with both the EA and the NDP optimization algorithms compared.


Sign in / Sign up

Export Citation Format

Share Document