THE USE OF MOLECULAR MARKERS FOR DURABLE RESISTANCE BREEDING IN THE CULTIVATED STRAWBERRY (FRAGARIA x ANANASSA)

2002 ◽  
pp. 615-618 ◽  
Author(s):  
E. Lerceteau-Köhler ◽  
P. Roudeillac ◽  
M. Markocic ◽  
G. Guérin ◽  
K. Praud ◽  
...  
Author(s):  
Kebede Dessalegn Lemu ◽  
Peter Ogbonna ◽  
Christian Agbo ◽  
Dagnachew Lule

This paper attempts to review the major sorghum production constraints, the progress and perspective on sorghum anthracnose (Colletotrichum sublineolum) resistance breeding. The importance of anthracnose in sorghum production and breeding for resistance status and progress were also primly discovered. Sorghum is an ancient environment resilient crop and believed to be a future crop due to its important merits like tolerant to stresses, wide adaptability and low input requirement. Insects and disease are major biotic impediments to realizing the yield potential of the crop. Anthracnose disease caused by Colletotrichum sublineolum is the most important disease that severely affecting the crop in all sorghum producing regions of the world. Research results revealed that anthracnose resulted in 30-50% or greater yield losses. Several management strategies such as, cultural, chemical and using resistance varieties have been developed. Employing host-plant resistance is the most economical and environmentally friendly approach which can successfully control the disease. Breeding assisted with molecular markers plays a great role in resistance breeding programme as it makes easy to screen large number of genotypes at once. Recent advancement of molecular breeding and bio-informatics tools are playing a significant role in efficiencies and precisions of resistance breeding. QTLs or genomic area for resistance were identified using traditional molecular markers and recent research results revealed discoveries of specific gene and locus using high throughput markers like SNPs using GWAS approach. The discovery of genes/QTL associated with the resistance trait, using the high through put molecular markers like SNPs, facilitates the easiest way for gene pyramiding from different individual genotypes to a single variety, introgression into adapted elite cultivar through marker assisted and editing genes for elite landraces to develop durable resistance varieties. Transgenic approach is now a day becoming a powerful tool to utilize novel alien genes for crop improvement including anthracnose resistance breeding in sorghum.


2021 ◽  
pp. 567-586
Author(s):  
Jerome D. Franckowiak ◽  
◽  
Gregory J. Platz ◽  

This chapter focuses on breeding barley for durable resistance to net and spot forms of net blotch. It starts by reviewing how Pyrenophora teres f. teres can cause net form net blotch. The chapter then goes on to examine the molecular markers that can be identified to provide resistances to net form net blotch. A section on the population dynamics of barley–P. teres f. teres interactions is also provided. The chapter also reviews how breeding crops with specific genes can help to create durable resistance to net form blotch. It moves on to discuss how Pyrenophora teres Drechs. f. maculata can cause spot form net blotch and how identifying specific molecular markers can help provide resistance to this form of net blotch. The chapter concludes by highlighting the importance of combining durable resistance to both forms of net blotch.


Weed Science ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Erik W. Ohlson ◽  
Michael P. Timko

AbstractCowpea witchweed [Striga gesnerioides (Willd.) Vatke] is a primary constraint of cowpea [Vigna unguiculata (L.) Walp.] production in West Africa. Previously, seven S. gesnerioides races were classified based upon host specificity and genotypic profiling. Because race number and distribution are dynamic systems influenced by gene flow, genetic drift, and natural selection, a thorough investigation of S. gesnerioides diversity and the effectiveness of known sources of resistance in cowpea is needed to develop varieties with durable and broad-spectrum Striga resistance. In this study, we screened seven cowpea lines against 58 unique S. gesnerioides populations collected from across nine West African countries. Individuals from 10 S. gesnerioides populations were genotyped with simple sequence repeat (SSR) markers. We identified six races of S. gesnerioides based on their parasitism of the seven cowpea lines with known differential resistance genotypes. No cowpea line was resistant to all 58 Striga populations and none of the Striga populations were able to overcome the resistance of all seven lines. A novel race, SG6, of the parasite collected from Kudu, Nigeria, was found to overcome more cowpea resistance genes than any previously reported race. SSR analysis indicates that Striga populations are highly differentiated and genetic relatedness generally corresponds with geographic proximity rather than their host compatibility. Due to the dearth of broad-spectrum resistance found among Striga-resistant cowpea lines, there exists a need to stack multiple Striga resistance genes in order to confer broad-spectrum and durable resistance.


2007 ◽  
pp. 100-104
Author(s):  
Stella Molnár ◽  
Zsuzsanna Galbács ◽  
Gábor Halász ◽  
Sarolta Hoffmann ◽  
Anikó Veres ◽  
...  

Incorporation of competitive quality and resistance against the most important fungal diseases (powdery and downy mildew) in a cultivar is one of the most important aims of grapevine breeding. In the 20th century, the most advanced results in grapevine resistance breeding were achieved by French researchers. They used resistant cultivars in more than 30% of their growing areas. In these varieties, North American wild Vitisspecies were the resistance gene sources. The discovery of immunity-like resistance of Muscadinia rotundifolia opened new perspectives in resistance breeding. M. rotundifolia harbours a dominant powdery mildew gene, providing resistance in highquality cultivars after back-crosses with V. vinifera varieties. M. rotundifolia has been involved in the Hungarian grape breeding programs since 1996, thanks to a French-Hungarian variety exchange. In addition to traditional selection methods, application of MAS (Marker Assisted Selection) based on various types ofmolecular markers, can provide additional tools for these efforts. Run1 locus, responsible for powdery mildew resistance, was identified in Muscadinia rotundifolia. Molecular markers closely linked to this locus are very significant in screening progenies deriving from M. rotundifolia and V. vinifera crosses, making possible the discrimination between resistant and susceptible genotypes at DNA level. In our analyses BC5 progeny of {(M. rotundifola×V. vinifera) BC4}×Cardinal (V. vinifera) tested for powdery symptoms were analysed with PCR-RFLP (GLP1- 12P1P3) and microsatellite markers (VMC4f3.1, VMC8g9). Our results proved the applicability of the linked markers and reliability of marker assisted selection.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 529b-529
Author(s):  
Patrick J. Conner ◽  
Susan K. Brown ◽  
Norman F. Weeden

Molecular markers (isozyme and DNA) have been used to map apple and have helped to elucidate the inheritance of some morphological traits. In this project random amplified polymorphic DNA (RAPD) and isozyme markers were used to create maps for `Wijcik McIntosh, a columnar (reduced branching) sport of `McIntosh' and NY 75441-67, an advanced selection from the multiple disease resistance breeding program. NY 75441-67 is resistant to scab source of resistance from M. floribunda) and resistant to cedar apple rust. `Wijcik McIntosh' is being used in the breeding program as a source of the dominant gene, Co, for reduced branching, but there is also interest in this genotype because of the tremendous variation in plant form observed in progenies segregating for columnar habit. Some of these form variants may be of greater commercial interest than the parental material. Morphological traits examined in this progeny included plant height, stem diameter, suckering, branching habit, spur production, and internode length. The usefulness of molecular markers to pre-select for components of plant form is being examined. Molecular markers promise to aid our understanding and manipulation of quantitative morphological traits.


2018 ◽  
Vol 22 (7) ◽  
pp. 795-799 ◽  
Author(s):  
I. V. Luk’yanchuk ◽  
A. S. Lyzhin ◽  
I. I. Kozlova

Strawberry (Fragaria x ananassa Duch.) varieties are susceptible to many fungal diseases. Identification of forms, carrying resistance genes, is an important stage in breeding programs leading to resistant varieties. The use of molecular markers allows to determine with high reliability the presence of the necessary genes in the genome and to identify promising forms. Some of the common strawberry's diseases, causing significant damage to strawberry plantations, are anthracnose (Colletotrichum acutatum Simmonds) and red stele root rot (Phytophthora fragariae var. fragariae Hickman). Dominant Rca2 gene is involved in monogenic resistance to C. acutatum pathogenicity group 2. Rpf1, Rpf2, Rpf3 genes are determined in monogenic resistance to red stele root rot. The purpose of this study was molecular genetic testing genotypes of genus Fragaria L. to identify carriers of Rca2 allele anthracnose resistance and Rpf1 allele red stele root rot resistance. The objects of study were the wild species of the genus Fragaria L. and strawberry varieties (Fragaria x ananassa Duch.) of different ecological and geographic origin. To assess allelic state Rca2 anthracnose resistance gene the dominant SCAR marker STS-Rca2_240 was used, was linked to the resistance gene Rca2 with a genetic distance of 2.8 cM. Rpf1 gene red stele root rot resistance was identified with the dominant SCAR marker R1A, was linked to the resistance gene Rpf1 with a genetic distance of 3.0 cM. The resistant allele of the marker STS-Rca2_240 was identified in the Laetitia variety (Rca2Rca2 or Rca2rca2 genotype), which allows us to recommend it as a promising source in breeding for anthracnose resistance. The other studied forms have homozygous recessive state of the marker STS-Rca2_240 (putative genotype rca2rca2). The resistant allele of the marker SCAR-R1A in the varieties and wild species of strawberry under study is absent, which presumably indicates their homozygous recessive genotype of Rpf1 gene (rpf1rpf1).


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1196-1207 ◽  
Author(s):  
James D. Kelly ◽  
Veronica A. Vallejo

Resistance to anthracnose in common bean is conditioned primarily by nine major independent genes, Co-1 to Co-10 as the Co-3/Co-9 genes are allelic. With the exception of the recessive co-8 gene, all other nine are dominant genes and multiple alleles exist at the Co-1, Co-3 and Co-4 loci. A reverse of dominance at the Co-1 locus suggests that an order of dominance exists among individual alleles at this locus. The nine resistance genes Co-2 to Co-10 are Middle American in origin and Co-1 is the only locus from the Andean gene pool. Seven resistance loci have been mapped to the integrated bean linkage map and Co-1 resides on linkage group B1; Co-2 on B11, Co-3 on B4; Co-4 on B8; Co-6 on B7; and Co-9 and Co-10 are located on B4 but do not appear to be linked. Three Co-genes map to linkage groups B1, B4 and B11 where clusters with genes for rust resistance are located. In addition, there is co-localization with major resistance genes and QTL that condition partial resistance to anthracnose. Other QTL for resistance may provide putative map locations for the major resistance loci still to be mapped. Molecular markers linked to the majority of major Co-genes have been reported and these provide the opportunity to enhance disease resistance through marker-assisted selection and gene pyramiding. The 10 Co-genes are represented in the anthracnose differential cultivars, but are present as part of a multi-allelic series or in combination with other Co-genes, making the characterization of more complex races difficult. Although the Co-genes behave as major Mendelian factors, they most likely exist as resistance gene clusters as has been demonstrated on the molecular level at the Co-2 locus. Since the genes differ in their effectiveness in controlling the highly variable races of the anthracnose pathogen, the authors discuss the value of individual genes and alleles in resistance breeding and suggest the most effective gene pyramids to ensure long-term durable resistance to anthracnose in common bean.


2020 ◽  
pp. 1707-1714
Author(s):  
Filson Kagimbo ◽  
Hussein Shimelis ◽  
Julia Sibiya

Weevil damage caused by sweetpotato weevil (Cylas spp.) is a major constraint to sweetpotato production in Tanzania due to a lack of improved varieties with durable resistance. The objective of this study was to screen sweetpotato germplasm collections for weevil resistance and to select the best parents to be used in resistance breeding. Field studies involving 96 sweetpotato genotypes were conducted at two weevil hotspot sites in Western Tanzania using a 12 x 8 lattice design with three replications at each site. Data collected included yield and yield related traits, weevil reaction and weevil damage score. The tested genotypes differed significantly (P < 0.01) for sweetpotato storage root number, root weight, root infestation and root damage score. Weevil infestation on storage roots significantly (P ≤0.05) correlated with total root number (r = 0.38) and weevil damage score (r = 0.79). Marketable root weight and total root weight were significantly correlated with infested root weight each with r = 0.45. The study identified nine sweetpotato genotypes expressing resistance and 10 genotypes with moderate resistance to weevil. Five genotypes including Magunhwa, Chuchu ya Nesi, Rugomoka, Tumauma and New Kawogo were selected with weevil resistance and desirable yield and yield-related traits. These genotypes can be used in future weevil resistance breeding programs of sweetpotato in Western Tanzania or related agro-ecologies.


Sign in / Sign up

Export Citation Format

Share Document