LIGHT FILTER USE IN ORNAMENTAL PLANT PRODUCTION TO CONTROL PLANT GROWTH AND TO IMPROVE PLANT QUALITY

2011 ◽  
pp. 205-211 ◽  
Author(s):  
J.O. Stapel ◽  
E. Maugin ◽  
S. Trihan ◽  
A. Ferre
HortScience ◽  
2014 ◽  
Vol 49 (6) ◽  
pp. 819-826 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

With the increasing popularity of green roofs, efficient green roof plant production is required to adequately supply the industry. Applying fertilizer at an appropriate rate can provide sufficient plant nutrition for efficient plant growth without excess nutrient leaching into the environment. This study compared rates of controlled-release fertilizer (CRF) applied to green roof modules at the plant production stage to determine an optimum CRF rate for encouraging plant growth and vegetative coverage while minimizing the amount and concentration of leached nutrients. After sedum cuttings were rooted in green roof modules on 29 Aug. 2011, CRF was applied at 5, 10, 15, 20, 25, 30, and 35 g·m−2 nitrogen (N) and modules were compared with an unfertilized control. Plant growth, vegetative coverage, and overall appearance requirements were met after fertilization at 20 g·m−2 N. Modules fertilized at less than 20 g·m−2 N did not reach the target proportion coverage during the study. When fertilized at 20 g·m−2 N, green roof modules reached the target proportion coverage after 240 days of growth. Differences in leachate volumes were observed among treatments 35 days after fertilization and fertilization at 20 g·m−2 N minimized leaching of most nutrients. Therefore, with the green roof module system used in this study, an application of 20 g·m−2 N for green roof module or sedum cutting production is an optimum CRF rate for plant growth and vegetative coverage while minimizing negative environmental impacts.


2020 ◽  
Vol 38 (2) ◽  
pp. 63-67
Author(s):  
Amanda Bayer

Abstract Reduced irrigation (RI) can conserve water and control plant growth; however, the timing of RI applications can impact plant growth and flowering. The goal of this research was to quantify growth of Salvia nemorosa L. ‘Ostfrieland' (East Friesland) in response to RI. A soil-moisture sensor automated irrigation system was used to apply four irrigation treatments: RI and well-watered (WW) controls (20% and 38% substrate water content) and two combination treatments to apply RI for either the first two weeks (20% followed by 38%, RIWW ) or final four weeks (38% followed by 20%, WWRI ) of the six-week study. Flower number, height, compactness, and relative chlorophyll content (SPAD) were not different across treatments. Average flower stem length was greater for the WW and RIWW treatments than for the RI treatment. Shoot dry weight was less for the RI treatment compared to the WW and RIWW treatments, respectively]. Cumulative irrigation volume was lowest for the RI treatment and highest for the RIWW treatment. Visually, plants in the RIWW treatment had an open, floppy habit that would likely negatively impact sales in a retail setting. Plants in the RI treatment were smaller, but visually appealing. Index words: soil moisture sensor, plant production, herbaceous perennial, container plants. Species used in this study: ‘Ostfrieland' salvia (Salvia nemorosa L.).


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 851
Author(s):  
Sonia Cacini ◽  
Sara Di Lonardo ◽  
Simone Orsenigo ◽  
Daniele Massa

Professional peat-free substrates for ornamental plant production are increasingly required by nursery growers. Most promising materials are green compost, coconut coir dust, and woody fibre, used alone or in mixtures. One of the major concerns is pH, usually higher than optimal. In this work, a method based on a three-step procedure was adopted to acidify three organic matrices alone or in mixtures and to individuate the most suitable product, between iron(II) sulphate 7-hydrate and elemental sulphur chips. Firstly, the determination of the buffering capacity by dilution with sulphuric acid was carried out to determine dosages. Afterwards, an incubation trial of 84 (iron(II) sulphate) or 120 days (sulphur chips) was conducted on matrices and substrate mixtures with calculated doses in a climatic chamber maintained at 21 °C. Iron(II) sulphate resulted not suitable because it caused a rapid, but not lasting, pH lowering and an excessive electrical conductivity (EC) increase. Sulphur chips could instead guarantee an adequate and lasting pH lowering. These results were then validated in the open field trial on matrices and substrates. The proposed acidification methodology could be considered in developing new substrates, but the rapidity of pH acidification and EC increase on plant and mineral nutrition should be further investigated.


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1650-1654
Author(s):  
Margarita Pérez-Jiménez ◽  
Almudena Bayo-Canha ◽  
Gregorio López-Ortega ◽  
Francisco M. del Amor

Enrichment with CO2 and a commercial mix of plant growth regulators were tested to improve the plant quality and survival of pregerminated cherry tree seedlings. Pregerminated seeds were transferred from a cold chamber to a climatic chamber where the CO2 was set at 800 µmol·mol−1 CO2 or at the ambient CO2 concentration. Also, half of the plants were sprayed with the mix of plant growth regulators and disposed randomly. The experiment lasted 18 days and physiological measurements, such as plant physiological status and growth, number of leaves, net CO2 assimilation (ACO2), internal CO2, stomatal conductance, and transpiration, were taken every 4 days. Also, at the end of the experiment, other parameters—such as total leaf area, photosynthetic pigments, soluble sugars, and starch—were recorded or quantified. During the experiment, plants cultured under CO2 enrichment exhibited a rapid increase in their photosynthetic rates, height, and leaf number; the commercial mix also increased plant height but inhibited leaf expansion and growth. At the end of the experiment, the amounts of starch and soluble sugars had increased in the plants grown under elevated CO2, compared with those plants grown in control conditions or with the commercial mix. Thus, culture at elevated CO2 achieved higher percentages of plant survival and of plants in active growth. We suggest that CO2 plays an important role—by increasing ACO2, water use efficiency, soluble sugars, and starch—which results in plants that are physiologically more prepared for transfer to the field.


2001 ◽  
Vol 47 (10) ◽  
pp. 916-924 ◽  
Author(s):  
Tika B Adhikari ◽  
C M Joseph ◽  
Guoping Yang ◽  
Donald A Phillips ◽  
Louise M Nelson

Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P [Formula: see text] 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%–73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (108 CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.Key words: biological control, plant growth promotion, endophytes, rice, seedling disease.


Cell Research ◽  
2012 ◽  
Vol 22 (12) ◽  
pp. 1650-1665 ◽  
Author(s):  
Ren-Jie Tang ◽  
Hua Liu ◽  
Yang Yang ◽  
Lei Yang ◽  
Xiao-Shu Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document