GENETIC CONTROL OF FLOWER DEVELOPMENT IN APPLE AND THE UTILISATION OF TRANSGENIC EARLY FLOWERING APPLE PLANTS IN BREEDING

2012 ◽  
pp. 29-34
Author(s):  
H. Flachowsky ◽  
M.-V. Hanke
1989 ◽  
Vol 5 ◽  
pp. 256-261 ◽  
Author(s):  
Gary N. Drews ◽  
Robert B. Goldberg

Science ◽  
1990 ◽  
Vol 250 (4983) ◽  
pp. 931-936 ◽  
Author(s):  
Z. Schwarz-Sommer ◽  
P. Huijser ◽  
W. Nacken ◽  
H. Saedler ◽  
H. Sommer

Development ◽  
1988 ◽  
Vol 104 (2) ◽  
pp. 195-203 ◽  
Author(s):  
M.K. Komaki ◽  
K. Okada ◽  
E. Nishino ◽  
Y. Shimura

We have isolated a number of mutants of Arabidopsis thaliana, a member of the mustard family, that have defects in flower development and morphogenesis. Of these, five mutants have been extensively characterized. Two mutants (Fl-40, Fl- 48) lacking petals show homeotic conversion of sepals to carpels. One mutant (Fl-54) displays highly variable phenotypes, including several types of homeotic variations, loss or distorted positions of the floral organs as well as abnormal structures on the inflorescence. Two other mutants (Fl-82, Fl-89) show aberrant structures in the pistils. Genetic analyses have revealed that these mutations are single and recessive, except for one mutant whose mutational loci still remain to be determined. These mutants may prove useful for the analysis of the genetic control of flower development and morphogenesis in the higher plant.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 403-410
Author(s):  
Ove Nilsson ◽  
Ilha Lee ◽  
Miguel A Blázquez ◽  
Detlef Weigel

Abstract Among the genes that control the transition to flowering in Arabidopsis is a large group whose inactivation causes a delay in flowering. It has been difficult to establish different pathways in which the flowering-time genes might act, because mutants with lesions in these genes have very similar phenotypes. Among the putative targets of the flowering-time genes is another group of genes, which control the identity of individual meristems. Overexpression of one of the meristem-identity genes, LEAFY, can cause the precocious generation of flowers and thus early flowering. We have exploited the opposite phenotypes seen in late-flowering mutants and LEAFY overexpressers to clarify the genetic interactions between flowering-time genes and LEAFY. According to epistatic relationships, we can define one class of flowering-time genes that affects primarily the response to LEAFY activity, and another class of genes that affects primarily the transcriptional induction of LEAFY. These observations allow us to expand previously proposed models for the genetic control of flowering time.


2014 ◽  
Vol 175 ◽  
pp. 74-86 ◽  
Author(s):  
Jaime A. Teixeira da Silva ◽  
Serena Aceto ◽  
Wei Liu ◽  
Hao Yu ◽  
Akira Kanno

2014 ◽  
Vol 62 (1) ◽  
pp. 22 ◽  
Author(s):  
Myralyn Abasolo ◽  
David J. Lee ◽  
Lyndon Brooks ◽  
Carolyn Raymond ◽  
Mervyn Shepherd

Genetically controlled asynchrony in anthesis is an effective barrier to gene flow between planted and native forests. We investigated the degree of genetically controlled variation in the timing of key floral developmental stages in a major plantation species in subtropical Australia, Corymbia citriodora subsp. variegata K.D. Hill and L.A.S Johnson, and its relative C. maculata K.D. Hill and L.A.S. Johnson. Flowering observations were made in a common garden planting at Bonalbo in northern New South Wales in spring on 1855 trees from eight regions over three consecutive years, and monthly on a subset of 208 trees for 12 months. Peak anthesis time was stable over years and observations from translocated trees tended to be congruent with the observations in native stands, suggesting strong genetic control of anthesis time. A cluster of early flowering provenances was identified from the north-east of the Great Dividing Range. The recognition of a distinct flowering race from this region accorded well with earlier evidence of adaptive differentiation of populations from this region and geographically-structured genetic groupings in C. citriodora subsp. variegata. The early flowering northern race was more fecund, probably associated with its disease tolerance and greater vigour. Bud abundance fluctuated extensively at the regional level across 3 years suggesting bud abundance was more environmentally labile than timing of anthesis. Overall the level of flowering in the planted stand (age 12 years) was low (8–12% of assessed trees with open flowers), and was far lower than in nearby native stands. Low levels of flowering and asynchrony in peak anthesis between flowering races of C. citriodora subsp. variegata may partially mitigate a high likelihood of gene flow where the northern race is planted in the south of the species range neighbouring native stands.


2016 ◽  
Vol 141 (4) ◽  
pp. 315-326 ◽  
Author(s):  
Yushu Li ◽  
Zongda Xu ◽  
Weiru Yang ◽  
Tangren Cheng ◽  
Jia Wang ◽  
...  

The MADS-box gene SOC1/TM3 (suppressor of overexpression of constans 1/tomato MADS-box gene 3) integrates multiple flowering signals to regulate the transition from vegetative to reproductive development in arabidopsis (Arabidopsis thaliana). Although SOC1-like genes have been isolated from a wide range of plant species, their orthologs are not well characterized in mei (Prunus mume), an important ornamental and fruit plant in east Asia. To better understand the molecular regulation of flower development in mei, we isolated and characterized three putative orthologs of arabidopsis SOC1, including PmSOC1-1, PmSOC1-2, and PmSOC1-3. The phylogenetic tree revealed that these genes fall into different subgroups within the SOC1-like gene group, suggesting distinct functions. PmSOC1-1 and PmSOC1-3 were mainly expressed in vegetative organs and at low expression levels in floral parts of the plants, whereas PmSOC1-2 was expressed only in vegetative organs. Furthermore, the expression level decreased significantly during flower bud differentiation development, suggesting a role for these genes in the transition from the vegetative to the reproductive phase. Overexpression of PmSOC1-1, PmSOC1-2, and PmSOC1-3 in arabidopsis caused early flowering. Early flowering also increased expression levels of four other flowering promoters, agamous-like 24 (AGL24), leafy (LFY), apetala 1 (AP1), and fruitfull (FUL). Moreover, the overexpression of PmSOC1-1 and PmSOC1-2 resulted in a range of floral phenotype changes such as sepals into leaf-like structures, petal color into green, and petal into filament-like structures. These results suggested that the genes PmSOC1-1, PmSOC1-2, and PmSOC1-3 play an evolutionarily conserved role in promoting flowering in mei, and may have distinct roles during flower development. Our findings will help elucidate the molecular mechanisms involved in the transition from vegetative to reproductive development in mei.


Sign in / Sign up

Export Citation Format

Share Document