ASSESSMENT OF GENETIC DIVERSITY OF MANGO (MANGIFERA INDICA L.) CULTIVARS FROM INDIAN PENINSULA USING SEQUENCE TAGGED MICROSATELLITE SITE (STMS) MARKERS

2013 ◽  
pp. 269-276 ◽  
Author(s):  
K.V. Ravishankar ◽  
M.R. Dinesh ◽  
B.H. Mani ◽  
B. Padmakar ◽  
C. Vasugi
HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1266-1270 ◽  
Author(s):  
Nader R. Abdelsalam ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem ◽  
Elsayed G. Ibrahem ◽  
Mohamed S. Elshikh

Mango (Mangifera indica L.) is a fruit crops belong to the family Anacardiaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.


2009 ◽  
Vol 7 (03) ◽  
pp. 244-251 ◽  
Author(s):  
Didiana Gálvez-López ◽  
Sanjuana Hernández-Delgado ◽  
Maurilio González-Paz ◽  
Enrique Noe Becerra-Leor ◽  
Miguel Salvador-Figueroa ◽  
...  

Genetic diversity and relationships among 112 mango (Mangifera indica) plants native to 16 states of Mexico and four controls [three mango cultivars (Ataulfo, Manila and Tommy Atkins) and one accession ofMangifera odorata] were evaluated based on amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) molecular markers. Mango germplasm shows broad dispersion through Mexico and genetically similar germplasm from different agroecological regions has previously been found by our group. Both AFLP and SSR analyses indicated high genetic similarity among mango populations that were clustered in two major groups: mangos from Gulf of Mexico coastline and mangos from Pacific Ocean coastline and locations far away from the sea. The highest genetic diversity was found within plants from each state, and significant genetic differentiation (FST = 0.1921, AFLPs and 0.1911, SSRs) was also observed among mango populations based on geographical origin and genetic status (cultivars versus landraces). Heterozygosity values ranged from low (0.38) to moderate (0.68), and no heterozygote deficits were found. The highest genetic variability was found in mango populations from Tabasco, Michoacán and Oaxaca. Data suggested that mangoes are subjected to natural or induced pollination, so segregation as well as genetic recombination plays major roles on genetic diversification of Mexican mangos. AFLP analysis was more robust than SSR for determining the genetic relationships among mango landraces from Mexico.


Sugar Tech ◽  
2005 ◽  
Vol 7 (2-3) ◽  
pp. 9-14 ◽  
Author(s):  
G. Hemaprabha ◽  
P. Govindaraj ◽  
N. Balasundaram ◽  
N. K. Singh

2006 ◽  
Vol 107 (4) ◽  
pp. 352-357 ◽  
Author(s):  
T.K. Behera ◽  
Pankaj Sharma ◽  
B.K. Singh ◽  
Gunjeet Kumar ◽  
Ravinder Kumar ◽  
...  

Author(s):  
May Sandar Kyaing ◽  
Sein Sandar May Phyo

This study was conducted to explore the genetic diversity and relationship of Sein Ta Lone mango cultivars among 20 commercial orchards in Sintgaing Township, Mandalay region. Nine microsatellite (SSR) markers were used to detect genetic polymorphism in a range from (3 to 6) alleles with (4.33) alleles per marker in average. Six out of nine microsatellite markers gave the PIC values of greater than (0.5). Among them, SSR36 held the highest PIC values of (0.691) while MiSHRS39 and MN85 possessed the least PIC values of (0.368) and (0.387) respectively. The genetic diversity was expressed as unbiased expected heterozygosity (UHe) value with an average of (0.561). The genetic relationship was revealed by (UPGMA) dendrogram in a range of (0.69 to 1.00). Based on UPGMA cluster analysis, three main clusters were classified among three different locations. This study was intended to help cultivar characterization and conservation for proper germplasm management with the estimation of genetic variation and relationship in the existing population of Sein Ta Lone mangoes in Sintgaing Township by microsatellite markers.  


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 993D-993 ◽  
Author(s):  
Raymond Schnell ◽  
J. Steven Brown ◽  
Cecile Olano ◽  
Alan Meerow ◽  
Richard Campbell ◽  
...  

Mangifera indica L. germplasm can be classified by origin with the primary groups being cultivars selected from the centers of diversity for the species, India and Southeast Asia, and those selected in Florida and other tropical and subtropical locations. Accessions have also been classified by horticultural type: cultivars that produce monoembryonic seed vs. cultivars that produce polyembryonic seed. In this study, we used 25 microsatellite loci to estimate genetic diversity among 203 accessions. The 25 microsatellite loci had an average of 6.96 alleles per locus and an average PIC value of 0.552. The total propagation error in the collection, i.e., plants that had been incorrectly labeled or grafted, was estimated to be 6.13%. When compared by origin, the Florida cultivars were more closely related to Indian than to Southeast Asian cultivars. Unbiased gene diversity (Hnb) of 0.600 and 0.582 was found for Indian and Southeast Asian cultivars, respectively, and both were higher than Hnb among Florida cultivars (0.538). When compared by horticultural type, Hnb was higher among the polyembryonic types (0.596) than in the monoembryonic types (0.571). Parentage analysis of the Florida cultivars was accomplished using a multistage process based on introduction dates of cultivars into Florida and selection dates of Florida cultivars. Microsatellite marker evidence suggests that as few as four Indian cultivars, and the land race known as `Turpentine', were involved in the early cultivar selections. Florida may not represent a secondary center of diversity; however, the Florida group is a unique set of cultivars selected under similar conditions offering production stability in a wide range of environments.


Sign in / Sign up

Export Citation Format

Share Document