Effects of a set of water restrictions on potted ornamental crops grown in greenhouses – influence on New Guinea impatiens quality

2018 ◽  
pp. 425-434
Author(s):  
E. Chantoiseau ◽  
H. Bouhoun Ali ◽  
P.E. Bournet ◽  
P. Cannavo
1993 ◽  
Vol 36 (6) ◽  
pp. 1887-1893
Author(s):  
G. E. Meyer ◽  
G. Ridder ◽  
J. B. Fitzgerald ◽  
D. D. Schulte

2016 ◽  
Vol 34 (4) ◽  
pp. 118-122
Author(s):  
A.K. Ostrom ◽  
C.C. Pasian

This manuscript describes the effect of controlled-release, and water-soluble fertilizers on the growth and quality of New Guinea impatiens (NGI) (Impatiens hawkeri Bull.). Three different fertilizers were applied at three rates each in order to investigate their effect on growth and quality of ‘Paradise New Red.’ NGI. Fertilizer treatments included 1) a 20-4.4-16.6 water-soluble fertilizer (WSF), 2) a 10-1.8-2.5 soybean-based fertilizer (SBF), and 3) a 15-4-10, three-to four-month longevity controlled-release fertilizer (CRF). CRF was applied as a pre-plant at 1×, 0.75×, and 0.5× the label rate. WSF and SBF fertigation rates of 75, 150, and 250 mg·L−1 N (75, 150, and 250 ppm N), respectively, were used based on a common range of fertigation rates in a greenhouse setting from what is considered relatively low, moderate, and high for NGI production. Plants were irrigated or fertigated by hand every 1 to 5 days as needed, based on environmental conditions and plant size, with either approximately 300 mL (10.4 oz) of either tap water or a fertilizer solution. SPAD readings, above ground plant weight, consumer preference ratings, and cumulative flower number were measured and used to calculate a quality index (QI). Optimal fertilizer rates as determined by the QI were found to be 1) CRF at 7.11 kg·m−3 (11.8 lb·yd−3), 2) SBF at 150 mg·L−1 (150 ppm) N, and 3) WSF at 75 mg·L−1 (75 ppm) N. With the application method used in this work, the WSF was more efficient than the SBF because it produced high quality plants with less fertilizer applied. While for the most part overall consumer preference ratings coincided with plant dry weight, there were some exceptions, indicating that consumers can prefer plants that are not necessary the largest as indicated by their dry weights. Consumer preferences may not coincide with typical plant parameters of plant growth all the time. Consumer preferences should be always considered in an industry that sell its products based mainly on their appearance.


2006 ◽  
Vol 131 (5) ◽  
pp. 622-631 ◽  
Author(s):  
E.J. Parks ◽  
J.W. Moyer ◽  
J.H. Lyerly

Fluorescent amplified fragment length polymorphism (F-AFLP) and microsatellites (SSRs) were used to evaluate new guinea impatiens (Impatiens hawkeri W. Bull) cultivars. Ninety-five quality-selected polymorphic fragments from 10 F-AFLP+3 primer combinations were used to evaluate 100 cultivars representing a variety of colors, forms, and breeding programs. Jaccard similarities and unweighted pair-group method of the arithmetic average (UPGMA) clustering formed a dendrogram with three cultivar groups, to a large extent clustering the cultivars by breeder with a high cophenetic correlation coefficient. A small insert genomic library was created and 442 kb of new guinea impatiens sequence was screened for repetitive motifs, resulting in 14 microsatellite markers. A subset of 46 cultivars representing five commercial breeding companies and 11 cultivar series was selected for microsatellite analysis. Seven loci were polymorphic, with two to six alleles per locus. Although both methods were equally effective in distinguishing the cultivars from one another, the topologies of the dendrograms for the two methods were different. The topology of the AFLP dendrogram reflected possible relationships based on cultivar series and breeding company, while the SSR dendrogram did not. The objectives of this research were to develop and validate both F-AFLP and SSR methodologies for new guinea impatiens, identify markers that can be reliably used for fingerprinting, and create a database for future cultivar comparisons.


2018 ◽  
Vol 36 (2) ◽  
pp. 73-81
Author(s):  
Jeff L. Sibley ◽  
Xiaomei Yang ◽  
Wenliang Lu ◽  
D. Joseph Eakes ◽  
Charles H. Gilliam ◽  
...  

Abstract Production of quality greenhouse and nursery crops is dependent on high quality and quantities of water. At present, in some regions, insufficient water supply is a growing concern. This study was conducted to evaluate growth of New Guinea impatiens (Impatiens hawkerii 'Celebrate Salmon'), when watered with a polyoxyethylenesorbitan monolaurate (C58H114O26) solution commercially known as Tween 20, at differing irrigation levels compared with a conventional water regimen without the surfactant, and also to determine how Tween 20 would affect photosynthesis and transpiration. The treatment design was a 3 by 6 complete factorial design plus a control. The two factors were irrigation and Tween 20. Irrigation levels of 20%, 40%, or 60% of the full crop evapotranspiration (ET) requirements were used in combination with Tween 20 concentrations of either 0, 25, 50, 75, 100, or 125 mg·L−1 (0, 0.003338, 0.00668, 0.0100145, 0.01335, or 0.01669 oz per gallon). The control group was watered with tap water to container capacity with about 30% leachate. Evapotranspiration was determined as the difference of the applied water amount minus the leachate of the control. Plants irrigated with Tween 20 from 25 to 125 mg·L−1 (0.003338 to 0.01669 oz per gallon) at the 40% or 60% irrigation level had the same height and growth index as plants in the control after three months of growth. Plant fresh and dry weights were not different between the control and the treatments of Tween 20 from 50 to 125 mg·L−1 (0.00668 to 0.01669 oz per gallon) at the 60% irrigation level or the treatment of Tween 20 at 100 mg·L−1 (0.01335 oz per gallon) at the 40% irrigation level. Tween 20 had no effect on net photosynthetic rate. Tween 20 decreased the amount of transpired water of New Guinea impatiens 'Celebrate Salmon'. When the Tween 20 concentration increased from 0 to 100 mg·L−1 (0 to 0.01335 oz per gallon) at the 60% irrigation level, the transpiration rate and stomatal conductance decreased markedly by 43% and 47%, respectively, and water use efficiency was increased by 47%. Results from this study suggest that Tween 20 is able to increase plant water use efficiency through regulation of stomatal conductance or transpiration under deficit irrigation. Index words: irrigation management, chemigation, source-sink physiology, deficit irrigation, wetting agent, Tween 20, adjuvant. Species used in this study: New Guinea Impatiens (Impatiens hawkerii W. Bull. 'Celebrate Salmon'). Chemicals used in this study: Tween 20 (polyoxyethylenesorbitan monolaurate). (aka: polysorbate 20, polyoxyethylene (20) sorbitan monolaurate)


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 859A-859
Author(s):  
Matthew W. Kent ◽  
David Wm. Reed

Greenhouse cultural methods must change rapidly to minimize runoff and to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8-mM N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked around 10 mM N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. Soluble salts remained low in middle and bottom layers at N concentrations below 10 mM, but increased significantly for all soil layers at levels above 10 mM. The top layer contained two to five times higher soluble salt levels than in the middle or bottom layers at all N levels. Increased nitrate concentration mimicked increases in soluble salts, while pH decreased as N concentration increased for both impatiens and peace lily.


2015 ◽  
Vol 25 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Youping Sun ◽  
Genhua Niu ◽  
Andrew K. Koeser ◽  
Guihong Bi ◽  
Victoria Anderson ◽  
...  

As the green industry is moving toward sustainability to meet the demands of society, the use of biocontainers as alternatives to petroleum-based plastic containers has drawn significant attention. Field trials of seven plantable biocontainers (coir, manure, peat, rice hull, soil wrap, straw, and wood fiber) were conducted in 2011 and 2012 at five locations in the United States to assess the influence of direct-plant biocontainers on plant growth and establishment and the rate of container decomposition in landscape. In 2011, container type did not affect the growth of any of the three species used in this study with an exception in one location. The three species were ‘Sunpatiens Compact Magenta’ new guinea impatiens (Impatiens ×hybrida), ‘Luscious Citrus’ lantana (Lantana camara), and ‘Senorita Rosalita’ cleome (Cleome ×hybrida). In 2012, the effect of container type on plant growth varied with location and species. Cleome, new guinea impatiens, and lantana plants grown in coir and straw containers were in general smaller than those in peat, plastic, rice hull, and wood fiber containers. After 3 to 4 months in the field, manure containers had on average the highest rate of decomposition at 88% for all five locations and two growing seasons. The levels of decomposition of other containers, straw, wood fiber, soil wrap, peat, coir, and rice hull were 47%, 46%, 42%, 38%, 25%, and 18%, respectively, in descending order. Plantable containers did not hinder plant establishment and posttransplant plant growth. The impact of container type on plant growth was smaller compared with that of location (climate). Similarly, the impact of plant species on pot decomposition was smaller compared with that of pot material.


Sign in / Sign up

Export Citation Format

Share Document