MODERN METHODS OF AERIAL PHOTOGRAPHY FOR ARCHITECTURAL AND PLANNING ANALYSIS OF CULTURAL HERITAGE OBJECTS

2017 ◽  
Vol 7 (4) ◽  
pp. 110-114
Author(s):  
Denis V. LITVINOV

In the article the results of research works of a large-scale object of cultural heritage of the Earth mound of the Krasnoyarsk fortress with application of aerial photography from the unmanned aerial vehicle are presented. The Krasnoyarsk fortress is a unique monument of military fortifi cation architecture of Russia of the fi rst half of the XVIII century and one of the largest defensive lines in Russia, created for protection of the southeastern edge of the European Russia against att acks of nomads. The results of vertical and oblique aerial photography allow to reveal the general architectural and planning composition of the Earth mound of fortress as well as to see all the area of a complex and to defi ne the territorial unity with other fortifi cation constructions. The methods of use of unmanned aerial vehicles give materials about the object in study and allow to bind its spatial location to the coordinate system of the terrain, to create three-dimensional model of the area, to compare the received images with the available historical cards and plans, which will signifi cantly facilitate the task of registering the Fortress with the security authorities and withdrawing its territory from economic use.

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 142
Author(s):  
Giuseppe Schirripa Spagnolo ◽  
Lorenzo Cozzella ◽  
Fabio Leccese

<p class="Abstract">The relief of form is undoubtedly one of the most topical topics in the field of cultural heritage. Physical access to historic and artistic manufactures can be limited by a lot of factors. For example, the access to the collection of the ancient coins is difficult, especially for students. Indeed, for coins digital archive of high-quality three-dimensional model and remote fruition is of great interest. The use of projected fringes for the measurement of surface profile is a well-developed technique. In this paper, we present a surface profile measurement system for small objects of cultural heritage where it is important not only to detect the shape with good accuracy but also to capture and archive the signs due to ageing. The illustrated equipment is simple, reliable, and cheap. Furthermore, some examples of acquisitions are presented to demonstrate the potentiality of the proposed scheme for recovering 2.5D shape of cultural heritage objects.</p>


2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Young Jo ◽  
Seonghyuk Hong

Three-dimensional digital technology is important in the maintenance and monitoring of cultural heritage sites. This study focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry to establish a three-dimensional model and the associated digital documentation of the Magoksa Temple, Republic of Korea. Herein, terrestrial laser scanning and UAV photogrammetry was used to acquire the perpendicular geometry of the buildings and sites, where UAV photogrammetry yielded higher planar data acquisition rate in upper zones, such as the roof of a building, than terrestrial laser scanning. On comparing the two technologies’ accuracy based on their ground control points, laser scanning was observed to provide higher positional accuracy than photogrammetry. The overall discrepancy between the two technologies was found to be sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and UAV photogrammetry data were aligned and merged post conversion into compatible extensions. A three-dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid data-point cloud was developed. This study demonstrates the potential for using the integration of terrestrial laser scanning and UAV photogrammetry in 3D digital documentation and spatial analysis of cultural heritage sites.


Author(s):  
A. Georgopoulos

The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.


Author(s):  
Efstratios Stylianidis ◽  
Andreas Georgopoulos

Cultural Heritage is recognized as a priceless asset of human being, which exposes the humanity's achievements over centuries. The need for documentation and preservation of cultural heritage is well known worldwide. Digital surveying techniques are playing a catalytic role towards recording and documentation of cultural heritage. This chapter describes the methodological and technological aspects of image-based recording and documentation approaches acting as the vehicle for the digital surveying of cultural heritage. The chapter not only describes the different technologies and techniques used but also goes to the extent of clarifying several applied implementation issues. Three different examples and application case studies from a small, a medium and a large-scale cultural heritage objects are provided to demonstrate the developments.


2011 ◽  
Vol 7 (S286) ◽  
pp. 154-158 ◽  
Author(s):  
J. Warnecke ◽  
P. J. Käpylä ◽  
M. J. Mantere ◽  
A. Brandenburg

AbstractWe present a three-dimensional model of rotating convection combined with a simplified model of a corona in spherical coordinates. The motions in the convection zone generate a large-scale magnetic field which is sporadically ejected into the outer layers above. Our model corona is approximately isothermal, but it includes density stratification due to gravity.


2018 ◽  
Vol 12 (3) ◽  
pp. 348-355 ◽  
Author(s):  
Kyoko Hasegawa ◽  
Liang Li ◽  
Naoya Okamoto ◽  
Shu Yanai ◽  
Hiroshi Yamaguchi ◽  
...  

Recently, we proposed stochastic point-based rendering, which enables precise and interactive-speed transparent rendering of large-scale laser-scanned point clouds. This transparent visualization method does not suffer from rendering artifact and realizes correct depth feel in the created 3D image.In this paper, we apply the method to several kinds of large-scale laser-scanned point clouds of cultural heritage objects and prove its wide applicability.In addition, we prove better image quality is realized by properly eliminating points to realize better distributional uniformity of points. Here, the distributional uniformity means uniformity of inter-point distances between nearest-neighbor points.We also demonstrate that highlighting feature regions, especially edges, in the transparent visualization helps us understand 3D internal structures of complex laser-scanned objects. The feature regions are highlighted by properly increasing local opacity of the regions.


Author(s):  
Karsten Luecke ◽  
Ernst-Ulrich Hartge ◽  
Joachim Werther

In a CFB combustor the reacting solids are locally fed into the combustion chamber. These reactants have to be dispersed across the reactor’s cross-sectional area. Since the rate of mixing is limited this leads to a mal-distribution of the reactants and to locally varying reaction conditions. In order to describe the influence of mixing a three-dimensional model of the combustion chamber is suggested here. The model is divided into three sub-topics. First, the flow structure in terms of local gas and solids velocities and solids volume concentrations is described. Second, mixing of the solids and the gas phase has to be quantified by defining dispersion coefficients, and finally the combustion process itself, i.e. the reaction kinetics, has to be modeled. Employing the information of the three sub-models mass balances for the reactants at each finite control volume inside the CFB combustion chamber can be formulated. The model was validated against data from measurements in the large-scale combustor of Chalmers University of Technology in Go¨teborg/Sweden. Concentration gradients concerning the char phase are only moderate. However, the spatial distribution of the oxygen shows strong non-uniformities, especially under conditions of staged combustion. In further predictive calculations, the influence of the fuel supply arrangement on the emissions of industrial sized CFB boilers was studied. Furthermore, the influence of the fuel composition on the feeding technique has been examined. High volatile fuels tend to form plumes of unburned hydrocarbons near the fuel feed point, and might therefore need more feed points per square meter cross-section area. Since the average gas residence time in the primary cyclone of a CFB plant is about 30–40% of the total gas residence time, a considerable burn-off of not completely oxidized gas species may occur here. An effectively used cyclone may remedy to a certain extent the negative impacts of incomplete mixing in the combustion chamber.


2012 ◽  
Vol 229-231 ◽  
pp. 690-694 ◽  
Author(s):  
Mohamad Shukri Zakaria ◽  
Kahar Osman ◽  
Md. Nor Musa

Liquefied Natural Gas (LNG) fleets are coasting with various condition and behavior. These variable leads to different type of LNG fleets build every year with unavoidable generated Boil-off Gas (BOG). Estimation of BOG generated inside LNG tank play significant role in determines the ship specification and management method of BOG including venting, propulsion or requalification. Hence, in the present study, the right choices of boundary condition and parameter have been implementing in order to have good estimation amount of BOG evaporates for specific LNG tank. Three dimensional model of cargo with capacity 160000 m3 LNG carrier are simulate using ANSYS Fluent with specific ambient air temperature of 5oC and ambient seawater temperature of 0oC have been chosen as a calculation case, gain the total heat transfer rate and Boil-off Rate (BOR). The result shows that the calculation model and simulation are feasible with typical LNG fleet specification and International Marine Organization (IMO) standard.


Sign in / Sign up

Export Citation Format

Share Document