EFFICIENT CONTROL OF FUNCTIONING OF ELECTRICAL GAS PREPARATION COMPLEX TO TRANSPORTATION BY MAIN PIPELINE

2021 ◽  
Vol 11 (2) ◽  
pp. 162-170
Author(s):  
Aleksandr I. DANILUSHKIN ◽  
Vasiliy A. DANILUSHKIN

The article discusses the problem of increasing the effi ciency of the linear section of the main gas pipeline system by developing eff ective control algorithms for the operating modes of the gas cooling unit. To develop control algorithms for a gas cooling unit, adapted mathematical models of thermal processes in air-cooled gas devices and in a gas pipeline are used. It is shown that when considering the dynamic modes, the gas pipeline system can be represented as consisting of two dynamic links. The link “gas cooling unit”, which includes up to 24 electric drives with heat exchangers, is characterized by relatively short time constants. In the main gas pipeline, heat exchange processes proceed much more slowly. This circumstance allows the main att ention to be focused on the development of an eff ective control system for the cooling plant. The control is carried out by discrete or continuous change in the fl ow rate of the cooling air through the heat exchanger by adjusting the number of switched on air coolers and changing the fan speed. The search for control algorithms for air coolers is carried out by formulating and solving the problem of minimizing the root-mean-square deviation of the gas temperature at the outlet from the heat exchanger from the required value. To implement the obtained control algorithms, a functional diagram of the automatic control system for the operating modes of the gas cooling unit has been developed.

2019 ◽  
Vol 9 (3) ◽  
pp. 167-174
Author(s):  
Alexander I. DANILUSHKIN ◽  
Ivan A. DANILUSHKIN ◽  
Vasily A. DANILUSHKIN

An integrated approach to solving the problem of achieving the maximum effi ciency of the electrical gas cooling complex at the compressor stations of the main pipeline system is considered. It is shown that the method used in practice for discrete control of the operation modes of the cooling unit by switching on or off a certain number of fans does not always provide the required temperature conditions. The use of a cascade control system will improve effi ciency and signifi cantly reduce operating costs. The problem of creating a two-level control system is solved on the basis of structural modeling of the heat exchange process as an object with distributed parameters. With the help of decomposition of the control object into “fast” and “slow” components, the structure of a two-level control system for the linearized model of the object is developed. As a result of the application of the proposed system, a minimum of electricity consumption for gas cooling, an increase in the service life of electric drive units and an increase in the accuracy of gas temperature stabilization during the processing of external disturbances are achieved.


Author(s):  
S. O. Maksymiuk ◽  
I. I. Vysochanskyi ◽  
O. M. Karpash

The article analyzes the adequacy and completeness of informative parameters of gas pipeline system with high branching of processing routes and analytical complexity of dynamic processes in the energy resource transportation. The problems of parameter informatization of these processes are highlighted and the main tasks for optimizing the control system of gas transmission system are defined. The investigation results of the diverging informative parameters of natural gas chemical properties at different levels of its supply are presented.


Author(s):  
A. I. Tatarinov

With the help of the general and structurally-information schemes of remote control, an analysis was made in the course of which the requirements for protection against unauthorized access of the complex system were clarified and established. In the article structural features of the remote control system of mobile measuring points of rocket and space equipment are considered. These features are represented by the requirements for information protection, as well as the operating modes of this system. The list of these regimes was obtained as a result of studies of structural and functional schemes of a remote control system for mobile measuring points.


Author(s):  
Lei Cao ◽  
Guo-Ping Liu ◽  
Wenshan Hu ◽  
Jahan Zaib Bhatti

The Android-based networked control system laboratory (NCSLab) is a remote control laboratory that adopts an extensible architecture, mainly including Android mobile devices, MATLAB servers, controllers and test rigs. In order to conduct various simulations and experiments more effectively in NCSLab, the first key issue that needs to be solved is to enable users to design their own control algorithms or functional blocks on the Android client, rather than just using the basic block libraries provided by the system. So, this paper proposes and implements a scheme for Android-based compilation of C-MEX S-functions. With this new feature, users can design personalized algorithm according to their requirements in the form of S-functions, which can be called and executed after being compiled by MATLAB server. Finally, through the experiment validation of the three-degree-of-freedom air bearing spacecraft platform, it is proved that the method of Android-based C-MEX S-functions is reliable and efficient, and this scheme well enhances the functionality and mobility of Android-based NCSLab.


Author(s):  
Mohadese Jahanian ◽  
Amin Ramezani ◽  
Ali Moarefianpour ◽  
Mahdi Aliari Shouredeli

One of the most significant systems that can be expressed by partial differential equations (PDEs) is the transmission pipeline system. To avoid the accidents that originated from oil and gas pipeline leakage, the exact location and quantity of leakage are required to be recognized. The designed goal is a leakage diagnosis based on the system model and the use of real data provided by transmission line systems. Nonlinear equations of the system have been extracted employing continuity and momentum equations. In this paper, the extended Kalman filter (EKF) is used to detect and locate the leakage and to attenuate the negative effects of measurement and process noises. Besides, a robust extended Kalman filter (REKF) is applied to compensate for the effect of parameter uncertainty. The quantity and the location of the occurred leakage are estimated along the pipeline. Simulation results show that REKF has better estimations of the leak and its location as compared with that of EKF. This filter is robust against process noise, measurement noise, parameter uncertainties, and guarantees a higher limit for the covariance of state estimation error as well. It is remarkable that simulation results are evaluated by OLGA software.


Sign in / Sign up

Export Citation Format

Share Document