Darwin the geologist in southern South America

2016 ◽  
Vol 35 (2) ◽  
pp. 303-345 ◽  
Author(s):  
Robert H. Dott ◽  
Ian W. D. Dalziel

Charles Darwin was a reputable geologist before he achieved biological fame. Most of his geological research was accomplished in southern South America during the voyage of H.M.S. Beagle (1831–1836). Afterward he published four books and several articles about geology and coral atolls and became active in the Geological Society of London. We have followed Darwin's footsteps during our own researches and have been very impressed with his keen observations and inferences. He made some mistakes, however, such as appealing to iceberg rafting to explain erratic boulders and to inundations of the sea to carve valleys. Darwin prepared an important hand-colored geological map of southern South America, which for unknown reasons he did not publish. The distributions of seven map units are shown. These were described in his books wherein he also documented multiple elevated marine terraces on both coasts of South America. While exploring the Andean Cordillera in central Chile and Argentina, he discovered two fossil forests. Darwin developed a tectonic theory involving vertical uplift of the entire continent, which was greatest in the Andes where magma leaked up from a hypothetical subterranean sea of magma to form volcanoes and earthquakes. The theory had little impact and was soon eclipsed by theories involving lateral compression of strata. His and other contemporary theories suffered from a lack of knowledge about the earth's interior. Finally with modern plate tectonic theory involving intense lateral compression across the Andean Cordillera we can explain satisfactorily the geology so carefully documented by Darwin.

2006 ◽  
Vol 134 (8) ◽  
pp. 2208-2223 ◽  
Author(s):  
Maisa Rojas

Abstract Results are reported from two 5-month-long simulations for southern South America using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The periods of simulation correspond to May–September 1997 and 1998, which were anomalously wet and dry winters for central Chile, respectively. The model setup includes triply nested, two-way-interacting domains centered over the eastern South Pacific and the western coast of southern South America, with horizontal grid intervals of 135, 45, and 15 km. Boundary conditions are provided from NCEP–NCAR reanalyzed fields. The analysis focuses on two subregions of central Chile (30°–41°S). Region 1 (32°–35°S), which is where the observed interannual precipitation differences are largest, is topographically very complex, with a mean height of the Andes Cordillera around 4500 m. Region 2 (35°–39°S) has relatively smooth terrain, as the mean height of the Andes drops to 3000 m. Station precipitation and temperature data are used for model validation. The model exhibits a negative temperature bias (from 2° to 5°C), as well as a positive precipitation bias (40%–80%). This precipitation bias can be partially explained by a positive moisture bias over the ocean in the model. In addition, these biases are highly correlated to the representation of terrain and station elevation in the model. The highest-resolution domain has the smallest precipitation bias for low-elevation stations, but a large positive bias at high altitudes (up to 300%). It also has a better representation of the spatial distribution of the precipitation, especially in region 1, where topography has a larger impact on the precipitation. Overall, the model domain with highest resolution best reproduces the observed precipitation and temperature, as well as the interannual differences. However, this study also shows that large improvements in the simulations of the surface variables are obtained when downscaling from 135 to 45 km, but much smaller improvements are found when downscaling from 45 to 15 km. These simulations represent the first effort in simulating seasonal precipitation in this topographically complex region of the Southern Hemisphere.


2013 ◽  
Vol 9 (3) ◽  
pp. 2277-2308
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr long austral summer (November to February) temperature reconstruction derived from the 210Pb and 14C dated organic sediments of Laguna Chepical (32°16' S/70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and Southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca AD 1400, long term temperature patterns were generally similar at low and high altitudes in central Chile.


Author(s):  
Thomas T. Veblen

Although most of the continent of South America is characterized by tropical vegetation, south of the tropic of Capricorn there is a full range of temperate-latitude vegetation types including Mediterranean-type sclerophyll shrublands, grasslands, steppe, xeric woodlands, deciduous forests, and temperate rain forests. Southward along the west coast of South America the vast Atacama desert gives way to the Mediterranean-type shrublands and woodlands of central Chile, and then to increasingly wet forests all the way to Tierra del Fuego at 55°S. To the east of the Andes, these forests are bordered by the vast Patagonian steppe of bunch grasses and short shrubs. The focus of this chapter is on the region of temperate forests occurring along the western side of the southernmost part of South America, south of 33°S. The forests of the southern Andean region, including the coastal mountains as well as the Andes, are presently surrounded by physiognomically and taxonomically distinct vegetation types and have long been isolated from other forest regions. Although small in comparison with the extent of temperate forests of the Northern Hemisphere, this region is one of the largest areas of temperate forest in the Southern Hemisphere and is rich in endemic species. For readers familiar with temperate forests of the Northern Hemisphere, it is difficult to place the temper temperate forests of southern South America into a comparable ecological framework owing both to important differences in the histories of the biotas and to contrasts between the broad climatic patterns of the two hemispheres. There is no forest biome in the Southern Hemisphere that is comparable to the boreal forests of the high latitudes of the Northern Hemisphere. The boreal forests of the latter are dominated by evergreen conifers of needle-leaved trees, mostly in the Pinaceae family, and occur in an extremely continental climate. In contrast, at high latitudes in southern South America, forests are dominated mostly by broadleaved trees such as the southern beech genus (Nothofagus). Evergreen conifers with needle or scaleleaves (from families other than the Pinaceae) are a relatively minor component of these forests.


2012 ◽  
Vol 8 (5) ◽  
pp. 1599-1620 ◽  
Author(s):  
S. Wagner ◽  
I. Fast ◽  
F. Kaspar

Abstract. In this study, we assess how the anthropogenically induced increase in greenhouse gas concentrations affects the climate of central and southern South America. We utilise two regional climate simulations for present day (PD) and pre-industrial (PI) times. These simulations are compared to historical reconstructions in order to investigate the driving processes responsible for climatic changes between the different periods. The regional climate model is validated against observations for both re-analysis data and GCM-driven regional simulations for the second half of the 20th century. Model biases are also taken into account for the interpretation of the model results. The added value of the regional simulation over global-scale modelling relates to a better representation of hydrological processes that are particularly evident in the proximity of the Andes Mountains. Climatic differences between the simulated PD minus PI period agree qualitatively well with proxy-based temperature reconstructions, albeit the regional model overestimates the amplitude of the temperature increase. For precipitation the most important changes between the PD and PI simulation relate to a dipole pattern along the Andes Mountains with increased precipitation over the southern parts and reduced precipitation over the central parts. Here only a few regions show robust similarity with studies based on empirical evidence. However, from a dynamical point-of-view, atmospheric circulation changes related to an increase in high-latitude zonal wind speed simulated by the regional climate model are consistent with numerical modelling studies addressing changes in greenhouse gas concentrations. Our results indicate that besides the direct effect of greenhouse gas changes, large-scale changes in atmospheric circulation and sea surface temperatures also exert an influence on temperature and precipitation changes in southern South America. These combined changes in turn affect the relationship between climate and atmospheric circulation between PD and PI times and should be considered for the statistical reconstruction of climate indices calibrated within present-day climate data.


The Auk ◽  
1983 ◽  
Vol 100 (2) ◽  
pp. 390-403 ◽  
Author(s):  
Kenneth E. Campbell ◽  
Eduardo P. Tonni

Abstract The extinct family Teratornithidae contains the world's largest known flying birds. A new method of determining body weights of extinct birds, based on the size of their tibiotarsi, facilitates the estimation of the wing dimensions of these giant birds. An analysis of the bones of the teratorn wing shows that they closely resemble those of condors, suggesting that teratorns flew in a manner similar to these large New World vultures. The bones of the pelvic girdle and hindlimbs indicate that teratorns were probably agile on the ground, though better adapted for walking and stalking than running. We estimate that the largest teratorn, Argentavis magnificens, weighed 80 kg and had a wingspan of 6-8 m. It probably became airborne by spreading its huge wings into the strong, continuous, westerly winds that blew across southern South America before the elevation of the Andes Mountains and, once aloft, flew in the manner of condors.


Phytotaxa ◽  
2013 ◽  
Vol 105 (1) ◽  
pp. 21
Author(s):  
DANIEL ADOLFO CÁCERES GONZÁLEZ

Bomarea Mirbel (1804: 71; Alstroemeriaceae) includes 122 species (Govaerts 2013) and is divided into four subgenera (Hofreiter & Tillich 2002): Baccata (five species), Bomarea (ca. seventy species), Sphaerine(twelve species) and Wichuraea (eighteen species). Bomarea is distributed from Mexico and the Greater Antilles to southern South America (Gereau 1994). The centre of distribution of the genus is along the Andes from Colombia to Bolivia (Hofreiter 2008).


2021 ◽  
Vol 13 (6) ◽  
pp. 2487-2513
Author(s):  
Roland Freisleben ◽  
Julius Jara-Muñoz ◽  
Daniel Melnick ◽  
José Miguel Martínez ◽  
Manfred R. Strecker

Abstract. Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacial-cycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along ∼ 5000 km of the western coast of South America between 1∘ N and 40∘ S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr−1 averaged over the past ∼ 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (∼ 100–200 m) and long-wavelength (∼ 102 km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaíso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020).


1982 ◽  
Vol 77 (2) ◽  
pp. 181-188 ◽  
Author(s):  
W. Lobato Paraense

A review of lymnaeid samples collected by the author from 106 localities in Mexico, Cuba, Jamaica, Haiti, Dominican Republic, Puerto Rico, Martinique, Saint Lucia, Guatemala, Costa Rica, Panamá, Ecuador, Peru, Bolivia, Chile, Argentina, Uruguay andBrazil showed that one of them (from Ecuador) belonged to Lymnaea cousini Jousseaume, 1887, and all the others to either L. viatrix Orbigny, 1835 or l. columella Say, 1817. The ranges of L. viatrix and L. columella overlap in Middle America, and in northern and southern South America (Venezuela-Colombia-Ecuador and northeastern Argentina-Uruguay-southernmost Brazil, respectively). L. viatrix was the only species found in Peru west of the Andes and in Chile, and is supposed to have migrated eastward to Argentina via the Negro river basin. The range of L. columella in South America is discontinuous. The species has been recorded from Venezuela, Colombia and Ecuador and, east of the Andes, from latitudes 15º S (central-west Brazil) to 35º S (La Plata, Argentina). Such a gap may be attributed to either introduction from the northern into the southern area, or migration along the unsampled region on the eastern side of the Andes, or extinction in the now vacant area. No lymnaeids have been found so far in Brazil north of latitude 15º S and in the Guianas.


Polar Record ◽  
1985 ◽  
Vol 22 (139) ◽  
pp. 413-420 ◽  
Author(s):  
Richard Grove

AbstractCharles Darwin's notes, diary entries and letters covering visits to southern South America and the Falkland Islands in 1833 and 1834 throw light on the revolutionary events of the time. His notes also contain the first indication of an evolutionary concept, suggested by the endemic flora and fauna of the Falklands, which guided his later observations on the Galapagos Islands and lead ultimately to his theory of evolution by natural selection.


Author(s):  
Juan J. Armesto ◽  
Mary T. K. Arroyo

The Mediterranean-type environment of South America, broadly defined as the continental area characterized by winter rainfall and summer drought, is confined to a narrow band about 1,000 km long on the western side of the Andes in north-central Chile (Arroyo et al., 1995, 1999). Although much has been written about the climate, vegetation, and landscapes of this part of Chile, and comparisons have been drawn with California and other Mediterranean-type regions of the world (Parsons, 1976; Mooney, 1977; Rundel, 1981; Arroyo et al., 1995), a modern synthesis of information on the physical setting, regional biota, and historical development of ecosystems in central Chile has not been attempted. This chapter is intended to provide such an integrated picture, emphasizing those aspects most peculiar to the region. Since the earlier floristic work on the Chilean matorral (e.g. Mooney, 1977), the name given to the vegetation of central Chile, there is now a much greater appreciation of the geographic isolation and high levels of biological diversity and endemism in this region of South America (Arroyo and Cavieres, 1997; Villagrán, 1995; Arroyo et al., 1995, 1999). Because of the great richness and singularity of its terrestrial flora, this area of the continent is considered to be one of the world’s 25 hotspots in which to conserve global biodiversity (Arroyo et al., 1999; Myers et al., 2000). An analysis of the main features of the Mediterranean environment in South America should therefore address the causes of such high floristic richness, the nature of current threats to biodiversity, and the prospects for its conservation in the long-term. A discussion of conservation concerns closes the present chapter (but see also: Arroyo and Cavieres, 1997; and Arroyo et al., 1999). In view of the vast literature on the biota and physical setting of central Chile, this chapter adopts a selective approach, from a biogeographic perspective, of what we consider to be the most remarkable historical, physical, and ecological features of this environment, which in turn may explain its extraordinary richness in plants and animals. Mediterranean-type ecosystems occupy a narrow band along the western margin of South America, from 30 to 36°S in central Chile.


Sign in / Sign up

Export Citation Format

Share Document