scholarly journals Influence of Drought Stress, Vermicompost and N Fertilizer on Safflower Leaves Antioxidant Enzymes Activity

2018 ◽  
Vol 23 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Zohreh Poudineh ◽  
Brat Ali Fakheri ◽  
Ali Reza Sirosmehr ◽  
Saeed Shojaei

2012 ◽  
Vol 169 (10) ◽  
pp. 929-939 ◽  
Author(s):  
Alessio Fini ◽  
Lucia Guidi ◽  
Francesco Ferrini ◽  
Cecilia Brunetti ◽  
Martina Di Ferdinando ◽  
...  

Author(s):  
Joseph Noble Amoah ◽  
Daniel Antwi-Berko

Sorghum [Sorghum bicolor (L.) Moench] is considered as an important staple crop in the tropical regions. However, the productivity of this useful crop is hindered by drought which contributes to significant yield reduction. The present study aimed to decipher the effects of drought stress on physiological, biochemical and gene expression changes in sorghum genotypes and to ascertain the differences in their response to drought stress. To achieve these objectives, six sorghum genotypes were grown in pot culture in a greenhouse, in a randomized complete block design and exposed to water stress treatment for 10 days. From the study, drought stress caused a significant (P < .05) reduction in plant height, leaf water and chlorophyll contents while the proline, malondialdehyde (MDA), soluble sugar, electrolyte leakage (EL), hydrogen peroxide (H2O2) and antioxidant enzymes activity increased significantly (P < .05) and differentially in all sorghum genotypes. Among the genotypes investigated, PI 585456 showed enhanced performance and was considered as the most tolerant to drought in relation to plant growth and water relation, membrane status, photosynthetic activity, ROS and osmolytes accumulation and antioxidant enzymes activity. Furthermore, the transcript expression analyses of different categories of drought-responsive genes, viz; antioxidant-related, osmolytes biosynthesis-related, dehydrin-related, photosystem-related and transcription-related were differentially upregulated in sorghum genotypes investigated. The results revealed the differences in metabolic response to drought among the genotypes, which accentuated the physiological, biochemical and molecular mechanism related to a specific response that may play a vital role in drought tolerance in sorghum.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 398
Author(s):  
Muneera D. F. AlKahtani ◽  
Yaser M. Hafez ◽  
Kotb Attia ◽  
Emadeldeen Rashwan ◽  
Latifa Al Husnain ◽  
...  

Drought stress deleteriously affects growth, development and productivity in plants. So, we examined the silicon effect (2 mmol) and proline (10 mmol) individually or the combination (Si + proline) in alleviating the harmful effect of drought on total phenolic compounds, reactive oxygen species (ROS), chlorophyll concentration and antioxidant enzymes as well as yield parameters of drought-stressed sugar beet plants during 2018/2019 and 2019/2020 seasons. Our findings indicated that the root diameter and length (cm), root and shoot fresh weights (g plant−1) as well as root and sugar yield significantly decreased in sugar beet plants under drought. Relative water content (RWC), nitrogen (N), phosphorus (P) and potassium (K) contents and chlorophyll (Chl) concentration considerably reduced in stressed sugar beet plants that compared with control in both seasons. Nonetheless, lipid peroxidation (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide (O2●−) considerably elevated as signals of drought. Drought-stressed sugar beet plants showed an increase in proline accumulation, total phenolic compounds and up-regulation of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activity to mitigate drought effects. Si and proline individually or the combination Si + proline considerably increased root and sugar yield, sucrose%, Chl concentration and RWC, MDA and EL were remarkably reduced. The treatments led to adjust proline and total phenolic compounds as well as CAT and SOD activity in stressed sugar beet plants. We concluded that application of Si + proline under drought stress led to improve the resistance of sugar beet by regulating of proline, antioxidant enzymes, phenolic compounds and improving RWC, Chl concentration and Nitrogen, Phosphorus and Potassium (NPK) contents as well as yield parameters.


2019 ◽  
Vol 135 ◽  
pp. 30-40 ◽  
Author(s):  
Xuxu Wang ◽  
Yangang Gao ◽  
Qingjie Wang ◽  
Min Chen ◽  
Xinlin Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document