scholarly journals Kinematic Analysis of a 3-DOF Screening Parallel Mechanism With Control Decoupling

CONVERTER ◽  
2021 ◽  
pp. 229-241
Author(s):  
Jun Xie, Feifei Zuo, Qizhi Yang, Yuping Li

In order to raise the low efficiency of traditional screening machine, a new parallel mechanism (PM) with two translation and one rotation is proposed. Analyze the composition of each kinematic chain based on topological characteristics of mechanism The analytical method is utilized to simplify three constraint equations of PM respectively and the correctness is verified by Matlab. On the basis of kinematic analysis, the Jacobian matrix of mechanism is solved, and decoupling characteristics of mechanism input-output control modes are evaluated. The mechanism is coupled between translational input Y and translational output x, and three input-output control modes are decoupling. In addition, the singular configuration of PM is also analyzed. The discrete element method was used to simulate material screening, and the influence of DOF on screening efficiency was analyzed by EDEM software and experiment, which result is met with the theoretical analysis

Author(s):  
J. A. Carretero ◽  
M. Nahon ◽  
B. Buckham ◽  
C. M. Gosselin

Abstract This paper presents a kinematic analysis of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described and its forward and inverse kinematics solutions are derived. Because the mechanism has only three degrees of freedom, constraint equations must be generated to describe the inter-relationship between the six Cartesian coordinates which describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. The stiffness and dexterity properties of the mechanism are then determined based on this Jacobian matrix. The mechanism is shown to exhibit desirable properties in the region of its workspace of interest in the telescope focussing application.


Author(s):  
Y.V. Rodionov ◽  
A.N. Sukhostavskiy ◽  
A.A. Romanov ◽  
A.V. Dukhov ◽  
I.V. Pelin

The article considers a novel parallel mechanism with drives located on the base at different angles to its plane. This arrangement allows performing a relative movement between objects under water or in space (in aggressive environments). The new mechanism topology is compact for transportation and efficient for operation in aggressive environments. Structural synthesis has been performed; the number of degrees of freedom of the output link was calculated. A general approach to solving the inverse kinematics problem of positions is proposed and an example for a kinematic chain is shown. Denavit — Hartenberg matrices are used to solve the problem of positions. The position of the output link described by this matrix is used to represent the points of this link in the base coordinate system. The constraint equations are applied, which are the distances between the points of the base and the output link.


2010 ◽  
Vol 43 ◽  
pp. 114-118
Author(s):  
Zhong Jie Chen ◽  
Qui Ju Zhang ◽  
Chun Jian Hua

In this paper, the kinematic analysis on a 3-DOF Delta parallel mechanism was carried out and the relationship models between the end cell output motions and the master arms input parameters were established. The forward and inverse solutions to position, velocity and acceleration were deduced and then verified by simulation, the curves that gotten by calculation and simulation were smooth, and no mutations or jumps appeared. In the meantime, based on the kinematic analysis, the impact of Jacobian matrix on the manipulator singular configuration was discussed, and the maneuverability in the reachable space was obtain quantitatively, meanwhile, the value of cond(C(Jv)) was located in the acceptable range, which approached to the isotropic value, so, the theory basis for optimal design was provided. The methods and conclusions in this paper are helpful to the design and control of 3-DOF Delta parallel mechanism.


Author(s):  
DU Hui ◽  
GAO Feng ◽  
PAN Yang

A novel 3-UP3R parallel mechanism with six degree of freedoms is proposed in this paper. One most important advantage of this mechanism is that the three translational and three rotational motions are partially decoupled: the end-effector position is only determined by three inputs, while the rotational angles are relative to all six inputs. The design methodology via GF set theory is brought out, using which the limb type can be determined. The mobility of the end-effector is analyzed. After that, the kinematic and velocity models are formulated. Then, workspace is studied, and since the robot is partially decoupled, the reachable workspace is also the dexterous workspace. In the end, both local and global performances are discussed using conditioning indexes. The experiment of real prototype shows that this mechanism works well and may be applied in many fields.


2013 ◽  
Vol 816-817 ◽  
pp. 821-824
Author(s):  
Xue Mei Niu ◽  
Guo Qin Gao ◽  
Zhi Da Bao

Kinematic analysis plays an important role in the research of parallel kinematic mechanism. This paper addresses a novel forward kinematic solution based on RBF neural network for a novel 2PRRR-PPRR redundantly actuated parallel mechanism. Simulation results illustrate the validity and feasibility of the kinematic analysis method.


Author(s):  
Jérôme Landuré ◽  
Clément Gosselin

This article presents the kinematic analysis of a six-degree-of-freedom six-legged parallel mechanism of the 6-PUS architecture. The inverse kinematic problem is recalled and the Jacobian matrices are derived. Then, an algorithm for the geometric determination of the workspace is presented, which yields a very fast and accurate description of the workspace of the mechanism. Singular boundaries and a transmission ratio index are then introduced and studied for a set of architectural parameters. The proposed analysis yields conceptual architectures whose properties can be adjusted to fit given applications.


Sign in / Sign up

Export Citation Format

Share Document