scholarly journals Privacy Preserving Data Transmission in Malicious Vehicular Adhoc Networks

Author(s):  
Mrs.R.M.Rajeshwari Et. al.

Vehicle Adhoc Network is deployed on the road, where vehicles constitute mobile nodes in which active security and intelligent transportation are important applications of VANET. VANETs are a key part of the intelligent transportation systems (ITS) framework. Sometimes, VANETs are referred as Intelligent Transportation Networks. However, authentication and privacy of users are still two vital issues in VANETs.  In the traditional mode, the transactional data storage provides no distributed and decentralized security, so that the third party initiates the dishonest behaviors possibly. VANET has  temporary participants , communication between vehicles are short-lived messages. Possible situation might happens , adversary may play as an legitimate user and able to perform malicious activity .To address these challenges this paper proposes timestamp based message between users to  perform secure data transmission and give the negligible probability of the attacker. With the help of Certificate Authority (CA) and the RoadSide Units (RSUs), our proposal attains the confidentiality and  trace the identity of the unauthenticated vehicle in the anonymous announcements as well. Finally, through the theoretical analysis and simulations, our scheme is able to implement a secure VANET framework with accountability and privacy preservation

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1358 ◽  
Author(s):  
Gyanendra Prasad Joshi ◽  
Eswaran Perumal ◽  
K. Shankar ◽  
Usman Tariq ◽  
Tariq Ahmad ◽  
...  

In recent times, vehicular ad hoc networks (VANET) have become a core part of intelligent transportation systems (ITSs), which aim to achieve continual Internet connectivity among vehicles on the road. The VANET has been used to improve driving safety and construct an ITS in modern cities. However, owing to the wireless characteristics, the message transmitted through the network can be observed, altered, or forged. Since driving safety is a major part of VANET, the security and privacy of these messages must be preserved. Therefore, this paper introduces an efficient privacy-preserving data transmission architecture that makes use of blockchain technology in cluster-based VANET. The cluster-based VANET architecture is used to achieve load balancing and minimize overhead in the network, where the clustering process is performed using the rainfall optimization algorithm (ROA). The ROA-based clustering with blockchain-based data transmission, called a ROAC-B technique, initially clusters the vehicles, and communication takes place via blockchain technology. A sequence of experiments was conducted to ensure the superiority of the ROAC-B technique, and several aspects of the results were considered. The simulation outcome showed that the ROAC-B technique is superior to other techniques in terms of packet delivery ratio (PDR), end to end (ETE) delay, throughput, and cluster size.


Author(s):  
A. H. Nourbakhsh ◽  
M. R. Delavar ◽  
M. Jadidi ◽  
B. Moshiri

Abstract. Intelligent Transportation Systems (ITS) is one of the main components of a smart city. ITS have several purposes including the increase of the safety and comfort of the passengers and the reduction of the road accidents. ITS can enhance safety in three modes before, within and after the collision by preventing accident via assistive system, sensing the collision situation and calculating the time of the collision and providing the emergency response in a timely manner. The main objective of this paper is related to the smart transportation services which can be provided at the time of the collision and after the accident. After the accident, it takes several minutes to hours for the person to contact the emergency department. If an accident takes place for a vehicle in a remote area, this time increases and that may cause the loss of life. In addition, determination of the exact location of the accident is difficult by the emergency centres. That leads to the possibility of erroneous responder act in dispatching the rescue team from the nearest hospital. A new assistive intelligent system is designed in this regard that includes both software and hardware units. Hardware unit is used as an On-Board Unit (OBU), which consists of GPS, GPRS and gyroscope modules. Once OBU detects the accident, a notification system designed and connected to OBU will sent an alarm to the server. The distance to the nearest emergency center is calculated using Dijkstra algorithm. Then the server sends a request for assistance to the nearest emergency centre. The proposed system is developed and tested at local laboratory conditions. The results show that this system can reduce Ambulance Arrival Time (AAT). The preliminary results and architecture of the system have been presented. The inclination angle determined by the proposed system along with the car position identified by the installed GPS sensor assists the crash/accident warning part of the system to send a help request to the nearest road emergency centre. These results verified that the probability of having a remote and smart car crash/accident decision support system using the proposed system has been improved compared to that of the existing systems.


Author(s):  
Kishor N. Tayade, Et. al.

Vehicular Ad hoc Networks is a promising sub-group of MANET. VANET is deployed on the highways, where the vehicles are mobile nodes. Safety and intelligent transportation are important VANET applications that require appropriate communication among vehicles, in particular routing technology. VANETs generally inherit their common features from MANETs where vehicles operate in a collaborative and dispersed way for promoting contact among vehicles and with network infrastructure like the Road Side Units (RSU) for enhanced traffic experience. In view of the fast growth of Intelligent Transportation Systems (ITS), VANETs has attracted considerable interest in this decade. VANET suffer from a major problem of link failure due to dynamic mobility of vehicles. In this paper we proposed a position based routing algorithm to identify stable path, this will improve the routing by decreasing overhead and interrupting the number of links. Link Expiration Time (LET) is used to provide the stable link, the link with the longest LET is considered as the most stable link. The multicast Ad-hoc On-demand Distance Vector (MAODV) is proposed to avoid the link breakages by using a link with longest LET.  Data loss is reduced by avoiding link breakages and enhance throughput by reducing the communication delay.


Author(s):  
Ying Gao ◽  
Tong Ren ◽  
Xia Zhao ◽  
Wentao Li

Intelligent transportation systems (ITS) are a collection of technologies that can enhance transport networks and public transit and individual decision-making about various elements of travel. ITS technologies comprise cutting-edge wireless, electronic and automated technology intending to improve safety, efficiency and convenience in surface transit. In certain cases, reducing energy usage has proven to be an ITS advantage. In this report, the primary energy advantages of a range of ITS systems established through models, pilot projects/field tests and extensive use are examined and summarized. In worldwide driving, the Internet of Things (IoT) solutions play a vital role. A new age of communication leading to ITS will be the communication between cars via IoT. IoT is a mixture of data and data analysis data storage and processing to manage the traffic system efficiently.Energy management, which is seen as an efficient, innovative approach to highly efficient energy generation plants. It simultaneously takes care of optimizing traditional sources of the IoT based intelligent transport system, helps to automate railways, roads, airways and shipways, which improve customer experience in the process. Following an evaluation of the situation, a proposal named energy management in intelligent transportation (EMIT) improves energy efficiency and economic efficiency in transportation. It improves energy management to reduce economic and ecological waste by decreasing global transport energy consumption. The sustainable development ratio is 85.7%, accidents detection ratio is 85.3%, electric vehicle infrastructure ratio is 83.6%, intelligent vehicle parking system acceptance ratio is 82.15%, and reduction ratio of energy consumption is 91.4%.


Author(s):  
Jiří Jelínek ◽  
Jiří Čejka ◽  
Josef Šedivý

Intelligent transportation systems (ITS) are a today´s hot topic, especially in the context of the development of information technologies, which can be employed in transportation. Although the scope and the technical solution of these systems may vary, they are frequently based on VANET (Vehicular ad hoc network), i.e. a communication network, which is primarily generated among the moving subjects, which form ITS. Given the highly dynamic VANET, the questions are raised as to the data transmission. This paper is aimed to make a detail analysis of the communications within VANET using the simulation model, which includes the static infrastructure of ITS and to experimentally verify the impact of this infrastructure on the dynamics of information spreading in ITS. The authors present the results obtained from a few different scenarios, which have been tested.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 80390-80403 ◽  
Author(s):  
Shihan Bao ◽  
Yue Cao ◽  
Ao Lei ◽  
Philip Asuquo ◽  
Haitham Cruickshank ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Julio A. Sanguesa ◽  
Fernando Naranjo ◽  
Vicente Torres-Sanz ◽  
Manuel Fogue ◽  
Piedad Garrido ◽  
...  

Vehicular ad hoc networks (VANETs) are wireless communication networks which support cooperative driving among vehicles on the road. The specific characteristics of VANETs favor the development of attractive and challenging services and applications which rely on message exchanging among vehicles. These communication capabilities depend directly on the existence of nearby vehicles able to exchange information. Therefore, higher vehicle densities favor the communication among vehicles. However, vehicular communications are also strongly affected by the topology of the map (i.e., wireless signal could be attenuated due to the distance between the sender and receiver, and obstacles usually block signal transmission). In this paper, we study the influence of the roadmap topology and the number of vehicles when accounting for the vehicular communications capabilities, especially in urban scenarios. Additionally, we consider the use of two parameters: the SJ Ratio (SJR) and the Total Distance (TD), as the topology-related factors that better correlate with communications performance. Finally, we propose the use of a new density metric based on the number of vehicles, the complexity of the roadmap, and its maximum capacity. Hence, researchers will be able to accurately characterize the different urban scenarios and better validate their proposals related to cooperative Intelligent Transportation Systems based on vehicular communications.


Author(s):  
Robert L. Bertini ◽  
Steve Hansen ◽  
Andrew Byrd ◽  
Thareth Yin

In cooperation with the Oregon Department of Transportation (ODOT) and other regional partners, the Portland regional intelligent transportation systems (ITSs) data archive was recently inaugurated via a direct fiber-optic connection between ODOT and Portland State University (PSU). In July 2004, the Portland Regional Transportation Archive Listing was activated; it received 20-s data from the 436 inductive loop detectors composing the Portland area's advanced traffic management system. PSU is designated as the region's official data archiving entity, consistent with the ITS architecture being developed. This paper discusses the steps taken for successful implementation of the Portland region's functional ITS data archive and plans for development and expansion. Included is a discussion of the archive structure, data storage, data processing, and user interface. An experiment involving Metro, the Portland region's metropolitan planning organization, demonstrates that archived loop detector data can be used to improve travel demand forecasts for the Portland region. The data archive will expand to include transit data, freeway incident data, city traffic signal data, and truck weigh-in-motion data.


Sign in / Sign up

Export Citation Format

Share Document