scholarly journals Waste heat utilisation for cogeneration of energy

Mechanik ◽  
2017 ◽  
Vol 90 (3) ◽  
pp. 254-256 ◽  
Author(s):  
Robert Zarzycki ◽  
Marcin Panowski

The paper shows the analysis of potential of absorption heat pump (APC) application to increase the efficiency of source energy conversion in the cogeneration power plant, by recuperation of waste heat from oil cooling system. In the presented case, the purpose of APC implementation was to eliminate the number of start up of pick hot water boilers. Obtained results showed that the waste heat may be utilised during the highest heat demand which may lead to delay or even avoiding the pick boiler start up, owing to absorption heat pump implementation.

2000 ◽  
Author(s):  
Jens Møller Andersen

Abstract Heat integration with absorption heat pumps requires investigation of many types of plant designs. In this article, it is concluded that in many cases high temperature absorption systems for heat recovery are more economically feasible than absorption systems for cooling purposes. The conclusion is based on a project where the scope was to investigate technical and economical possibilities for heat integration of an absorption heat pump in a milk powder plant. The first idea behind the project was to use the waste heat from the rejected air to drive an absorption cooling system to reduce the electricity consumption for cooling proposes. The model of the plant was based on simulations as a background for a time averaged COP model. It was concluded that an absorption system for generating low temperature steam is more feasible.


2013 ◽  
Vol 291-294 ◽  
pp. 1670-1674
Author(s):  
Biao Li ◽  
Jiang Fan

It is the new way of the thermal power plant energy conservation to recycling plant circulating water waste heat for heating with the heat pump technology. The recovery of low temperature waste heat is the background. And lithium bromide absorption heat pump is the object of this study. The impact of changes in temperature parameters on the performance of heat pump unit is analyzed. As a theoretical basis for the design of the heat pump system and power plant heat pump unit’s optimal operation provide a reference. The result provides a theoretical reference for the optimal operation of the heat pump system design and power plant heat pump units.


2021 ◽  
Vol 256 ◽  
pp. 02011
Author(s):  
Ze Wang ◽  
Honghong Shen ◽  
Qunyin Gu ◽  
Daoyuan Wen ◽  
Gang Liu ◽  
...  

The use of heat pump technology to recover the waste heat of circulating water from the power plant instead of steam extraction for heating can not only improve the thermal efficiency of the unit and reduce the loss of cold source, but also has great advantages in energy saving. This paper uses absorption and compression heat pumps to recover the waste heat of circulating water in the power plant to study its energy-saving benefits. Under the same heating load, the economics of the two heat pumps are calculated and analyzed. The results show that the energy-saving benefits of absorption heat pump units are far greater than compression units. But in terms of water saving, the water saving capacity of the compression heat pump unit is higher than that of the absorption heat pump.


2012 ◽  
Vol 542-543 ◽  
pp. 70-73 ◽  
Author(s):  
Xin Hui Cao ◽  
Guang Zhang ◽  
Xi Lun Wang ◽  
Yu Ning Zhang

Absorption heat pump (AHP) heating in power plants in winter is an effective way to recover waste heat and make full use of energy. In this paper, quantitative calculation is taken to analyze the energy saving and economy efficiency of AHP heating in a power plant. The rate of energy utilization ηtp, the coal and water saving amount and the increased income of AHP heating are calculated. Results show AHP heating in power plants is superior to steam extraction heating both in energy saving and economy.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1101-1112
Author(s):  
Robert Zarzycki ◽  
Marcin Panowski

The very rapid growth of share of electricity generation from renewable sources is observed recent years. However, even if that share reaches about 50% in 2050, almost 50% of electricity will still be generated based on fossil fuels combustion rather than on nuclear energy. That means, energy generated from coal will still be important for the next decades. The largest sources of energy loses within the steam power plant is the steam cooling system. The energy dissipated to the atmosphere in that system is very difficult to be utilized mainly due to the relatively low temperature, and its direct utilization without additional equipment is rather impossible. The large amount of energy lost to the environment leads to low overall thermal efficiency of the plant, therefore, utilization of this energy should be of primary importance. The paper shows concept of increasing efficiency of cogeneration plant thermal cycle by utilisation of waste heat from flue gas with absorption heat pump, for the purpose of system heat generation. Calculations of combined system of power plant fuelled with biomass fuel with implemented waste heat utilisation system were performed for one heating season and different moisture content in the fuel. Results show, that owing to waste heat utilization instead of conventional heat exchanger, additional electricity generation during the heating season at even 46864 MWh may be achieved which is over 18% more for the moisture content in the biomass fuel at 0.5 kg/kg, the same ambient conditions and heat generation.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


2021 ◽  
Vol 13 (2) ◽  
pp. 983
Author(s):  
Mustapha Mukhtar ◽  
Bismark Ameyaw ◽  
Nasser Yimen ◽  
Quixin Zhang ◽  
Olusola Bamisile ◽  
...  

The world has not been able to achieve minimum greenhouse gas emissions in buildings’ energy consumptions because the energy and emissions optimization techniques have not been fully utilized. Thermal comfort is one of the most important issues for both residential and commercial buildings. Out of the 40% of global energy consumed by buildings, a large fraction is used to maintain their thermal comfort. In this study, a comprehensive review of the recent advancements in building energy conservation and efficiency application is presented based on existing high-quality research papers. Additionally, the retrofit of the heating/cooling and hot water system for an entire community in Cyprus is presented. This study aims to analyze the technical and environmental benefits of replacing existing electric heaters for hot water with heat pump water heating systems and the use of heat pump air conditioners for thermal comfort in place of the existing ordinary air conditioners for space heating and cooling. One administrative building, 86 apartments (including residential and commercial) buildings, and a restaurant building is retrofitted, and the feasibility of the project is determined based on three economic indicators, namely; simple payback period (SPP), internal rate of return (IRR), and net present value (NPV). The electrical energy required by the hot water systems and the heating/cooling system is reduced by 263,564 kWh/yr and 144,825 kWh/yr, respectively. Additionally, the retrofit project will reduce Cyprus’ CO2 emission by 121,592.8 kg yearly. The SPP, IRR, and NPV for the project show that the retrofit is economically feasible.


Author(s):  
A. Al Bassam ◽  
Y. M. Al Said

This paper summarizes the experiences with the first gas turbine inlet air cooling project in Saudi Arabia. It will cover the feasibility study, cooling system options, overview, system equipment description, process flow diagram, construction, commissioning, start-up and performance of the project which is currently under commissioning and initial start up at Qassim Central Power Plant (QCPP) owned by Saudi Electric Company (S.E.C.) Central Region Branch.


Sign in / Sign up

Export Citation Format

Share Document