scholarly journals Array-based comparative genomic hybridization (ARRAY-CGH) in analysis of chromosomalaberrations and CNV in blighted ovum pregnancies

2013 ◽  
Vol 62 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Igor Nikolayevich Lebedev ◽  
Anna Aleksandrovna Kashevarova ◽  
Nikolay Alekseyevich Skryabin ◽  
Tatyana Vladimirovna Nikitina ◽  
Mariya Yevgenyevna Lopatkina ◽  
...  

Application of modern molecular cytogenetic technologies in research and clinical practice provides unprecedented possibilities for high resolution molecular karyotyping in different areas of clinical cytogenetics. In this study the oligonucleotide-based array-CGH data about unbalanced chromosomal aberrations and copy number variations (CNV) in blighted ovum pregnancies are presented. Analysis of genes content of involved chromosomal regions was done. Scopes, perspectives and limitations of aCGH application into analysis of early pregnancy losses are discussed.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Norio Takahashi ◽  
Yasunari Satoh ◽  
Keiko Sasaki ◽  
Yuko Shimoichi ◽  
Keiko Sugita ◽  
...  

Segmental copy-number variations (CNVs) may contribute to genetic variation in humans. Reports of the existence and characteristics of CNVs in a large Japanese cohort are quite limited. We report the data from a large Japanese population. We conducted population screening for 213 unrelated Japanese individuals using comparative genomic hybridization based on a bacterial artificial chromosome microarray (BAC-aCGH). We summarize the data by focusing on highly polymorphic CNVs in ≥5.0% of the individual, since they may be informative for demonstrating the relationships between genotypes and their phenotypes. We found a total of 680 CNVs at 16 different BAC-regions in the genome. The majority of the polymorphic CNVs presented on BAC-clones that overlapped with regions of segmental duplication, and the majority of the polymorphic CNVs observed in this population had been previously reported in other publications. Some of the CNVs contained genes which might be related to phenotypic heterogeneity among individuals.


2019 ◽  
Vol 50 (06) ◽  
pp. 367-377
Author(s):  
S. Monteiro ◽  
J. Pinto ◽  
A. Mira Coelho ◽  
M. Leão ◽  
S. Dória

Background Autism spectrum disorders (ASD) affect many children with an estimated prevalence of 1%. Array-comparative genomic hybridization (CGH) offers significant sensitivity for the identification of submicroscopic chromosomal abnormalities and it is one of the most used techniques in daily practice. The main objective of this study was to describe the usefulness of array-CGH in the etiologic diagnosis of ASD. Methods Two-hundred fifty-three patients admitted to a neurogenetic outpatient clinic and diagnosed with ASD were selected for array-CGH (4 × 180K microarrays). Public databases were used for classification in accordance with the American College of Medical Genetics Standards and Guidelines. Results About 3.56% (9/253) of copy number variations (CNVs) were classified as pathogenic. When likely pathogenic CNVs were considered, the rate increased to 11.46% (29/253). Some CNVs apparently not correlated to the ASD were also found. Considering a phenotype–genotype correlation, the patients were divided in two groups. One group according to previous literature includes all the CNVs related to ASDs (23 CNVs present in 22 children) and another with those apparently not related to ASD (10 CNVs present in 7 children). In 18 patients, a next-generation sequencing (NGS) panel were performed. From these, one pathogenic and 16 uncertain significance variants were identified. Conclusion The results of our study are in accordance with the literature, highlighting the relevance of array-CGH in the genetic of diagnosis of ASD population, namely when associated with other features. Our study also reinforces the need for complementarity between array-CGH and NGS panels or whole exome sequencing in the etiological diagnosis of ASD.


2011 ◽  
Vol 69 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Isabela Nelly Machado ◽  
Juliana Karina Heinrich ◽  
Ricardo Barini

OBJECTIVE: Holoprosencephaly (HPE) is heterogeneous in pathogenesis, integrating genetic susceptibility with the influence of environmental factors. Submicroscopic aberrations may contribute to the etiology of HPE. Our aim was to report the molecular analysis of 4 fetuses with HPE and normal metaphase karyotype. METHOD: A whole genome BAC-array based Comparative Genomic Hybridization (array CGH) was carried out in fetal blood samples. All potential cytogenetic alterations detected on the arrays were matched against the known copy number variations databases. RESULTS: The array CGH analysis showed copy number gains and losses in all cases. We found a recurrent deletion in 15q14 (clone RP11-23J11) and in 15q22 (clone RP11-537k8) in 2 out 4 cases analyzed. We also observed submicroscopic gain in 6p21 in 3 out of 4 fetuses in nearby clones. All these regions were tested in known databases and no copy number variations have been described for them. CONCLUSION: This is the first report of molecular characterization through a whole genome microarray CGH of fetuses with HPE. Our results may contribute to verify the effectiveness and applicability of the molecular technique of array CGH for prenatal diagnosis purposes, and contributing to the knowledge of the submicroscopic genomic instability characterization of HPE fetuses.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Karen Regina de Souza ◽  
Rafaella Mergener ◽  
Janaina Huber ◽  
Lucia Campos Pellanda ◽  
Mariluce Riegel

Despite considerable advances in the detection of genomic abnormalities in congenital heart disease (CHD), the etiology of CHD remains largely unknown. CHD is the most common birth defect and is a major cause of infant morbidity and mortality, and conotruncal defects constitute 20% of all CHD cases. We used array comparative genomic hybridization (array-CGH) to retrospectively study 60 subjects with conotruncal defects and identify genomic imbalances. The DNA copy number variations (CNVs) detected were matched with data from genomic databases, and their clinical significance was evaluated. We found that 38.3% (23/60) of CHD cases possessed genomic imbalances. In 8.3% (5/60) of these cases, the imbalances were causal or potentially causal CNVs; in 8.3% (5/60), unclassified CNVs were identified; and in 21.6% (13/60), common variants were detected. Although the interpretation of the results must be refined and there is not yet a consensus regarding the types of CHD cases in which array-CGH should be used as a first-line test, the identification of these CNVs can assist in the evaluation and management of CHD. The results of such studies emphasize the growing importance of the use of genome-wide assays in subjects with CHD to increase the number of genomic data sets associated with this condition.


Placenta ◽  
2011 ◽  
Vol 32 ◽  
pp. S282
Author(s):  
Paola Scaruffi ◽  
Sara Stigliani ◽  
Annamaria Jane Nicoletti ◽  
Pier Luigi Venturini ◽  
Gian Paolo Tonini ◽  
...  

2020 ◽  
Vol 28 (2) ◽  
pp. 123-131
Author(s):  
Valeriu Moldovan ◽  
Elena Moldovan

AbstractMultiplex Ligation-dependent Probe Amplification is a technique proposed for the detection of deletions or duplications that may lead to copy number variations in genomic DNA, mainly due to its higher resolution, and shorter overall diagnosis time, when compared with techniques traditionally used, namely karyotyping, fluorescence in situ hybridization, and array comparative genomic hybridization. Multiplex Ligation-dependent Probe Amplification is a fast (about 2 days), useful and cost-effective technique, being suitable for the diagnosis of hereditary conditions caused by complete or partial gene deletions or duplications, as these conditions are either more difficult or impossible to be diagnosed by other techniques, such as PCR, Real-Time PCR, or sequencing (Sanger or Next Generation). Due to its numerous advantages over conventional cytogenetic analysis techniques, Multiplex Ligation-dependent Probe Amplification could be used in the near future as the main technique for the molecular investigation of genetic conditions caused by copy number variations, in both rare and complex genetic disorders.


2020 ◽  
Vol 21 (21) ◽  
pp. 8247
Author(s):  
Alina Christine Hilger ◽  
Gabriel Clemens Dworschak ◽  
Heiko Martin Reutter

The treatment of major birth defects are key concerns for child health. Hitherto, for the majority of birth defects, the underlying cause remains unknown, likely to be heterogeneous. The implicated mortality and/or reduced fecundity in major birth defects suggest a significant fraction of mutational de novo events among the affected individuals. With the advent of systematic array-based molecular karyotyping, larger cohorts of affected individuals have been screened over the past decade. This review discusses the identification of disease-causing copy-number variations (CNVs) among individuals with different congenital malformations. It highlights the differences in findings depending on the respective congenital malformation. It looks at the differences in findings of CNV analysis in non-isolated complex congenital malformations, associated with central nervous system malformations or intellectual disabilities, compared to isolated single organ-system malformations. We propose that the more complex an organ system is, and the more genes involved during embryonic development, the more likely it is that mutational de novo events, comprising CNVs, will confer to the expression of birth defects of this organ system.


Sign in / Sign up

Export Citation Format

Share Document