scholarly journals Birds as a food base for mosquitoes – carriers of the causative agent of tropical malaria

2021 ◽  
Vol 10 (1) ◽  
pp. 113-116
Author(s):  
Andrey Vladimirovich Mishchenko ◽  
Elena Aleksandrovna Artemyeva

The paper discusses the food supply of the vector of malaria mosquitoes of the genus Anopheles, which are birds of tropical regions of West Africa. Birds, as distant migrants, penetrate high latitudes and contribute to the spread of malaria in Europe and other countries of the northern hemisphere. The results of the studies show that the main role in the choice of prey objects by female Anopheles gambiae mosquitoes birds is played by the nesting and forage biotopes of birds, which are comfortable for mosquito breeding. Probably, female mosquitoes use non-feathered parts of the body of adult birds for feeding unfeathered or weakly feathered chicks in nests. The circulation of Plasmodium falciparum includes populations of birds, primarily water, near-water and marsh complexes, as well as birds, the development of which takes place in specific conditions of a closed space in holes, hollows and closed nests. The Anopheles gambiae mosquito in this system plays the role of a carrier of Plasmodium falciparum not only among populations of birds and mammals, but also among humans, which determines the range of tropical malaria, which is a natural focal vector-borne disease. The authors have identified 37 species of birds carriers of malaria in natural and anthropogenic biocoenoses of Mali (West Africa). The most numerous during the migration and nesting period are birds of the aquatic, near-water and meadow-bog complexes (herons, herons, waders) distant migrants on the territory of Russia and neighboring countries. The risk areas include, first of all, the southern regions Astrakhan Region, Rostov Region and Krasnodar Region.

Parasitology ◽  
1993 ◽  
Vol 106 (S1) ◽  
pp. S55-S75 ◽  
Author(s):  
J. F. Walsh ◽  
D. H. Molyneux ◽  
M. H. Birley

SUMMARYThis review addresses' changes in the ecology of vectors and epidemiology of vector-borne diseases which result from deforestation. Selected examples are considered from viral and parasitic infections (arboviruses, malaria, the leishmaniases, nlariases, Chagas Disease and schistosomiasis) where disease patterns have been directly or indirectly influenced by loss of natural tropical forests. A wide range of activities have resulted in deforestation. These include colonisation and settlement, transmigrant programmes, logging, agricultural activities to provide for cash crops, mining, hydropower development and fuelwood collection. Each activity influences the prevalence, incidence and distribution of vector-borne disease. Three main regions are considered – South America, West & Central Africa and South-East Asia. In each, documented changes in vector ecology and behaviour and disease pattern have occurred. Such changes result from human activity at the forest interface and within the forest. They include both deforestation and reafforestation programmes. Deforestation, or activities associated with it, have produced new habitats for Anopheles darlingi mosquitoes and have caused malaria epidemics in South America. The different species complexes in South-East Asia (A. dirus, A. minimus, A. balabacensis) have been affected in different ways by forest clearance with different impacts on malaria incidence. The ability of zoophilic vectors to adapt to human blood as an alternative source of food and to become associated with human dwellings (peridomestic behaviour) have influenced the distribution of the leishmaniases in South America. Certain species of sandflies (Lutzomyia intermedia, Lu. longipalpis, Lu. whitmani), which were originally zoophilic and sylvatic, have adapted to feeding on humans in peridomestic and even periurban situations. The changes in behaviour of reservoir hosts and the ability of pathogens to adapt to new reservoir hosts in the newly-created habitats also influence the patterns of disease. In anthroponotic infections, such as Plasmodium, Onchocerca and Wuchereria, changes in disease patterns and vector ecology may be more difficult to detect. Detailed knowledge of vector species and species complexes is needed in relation to changing climate associated with deforestation. The distributions of the Anopheles gambiae and Simulium damnosum species complexes in West Africa are examples. There have been detailed longitudinal studies of Anopheles gambiae populations in different ecological zones of West Africa. Studies on Simulium damnosum cytoforms (using chromosome identification methods) in the Onchocerciasis Control Programme were necessary to detect changes in distribution of species in relation to changed habitats. These examples underline the need for studies on the taxonomy of medically-important insects in parallel with long-term observations on changing habitats. In some circumstances, destruction of the forest has reduced or even removed disease transmission (e.g. S. neavei-transmitted Onchocerca in Kenya). Whilst the process of deforestation can be expected to continue, hopefully at a decreased rate, it is expected that unpredictable and sometimes rapid changes in disease patterns will pose problems for the public health services.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Domonbabele F. D. S. Hien ◽  
Prisca S. L. Paré ◽  
Amanda Cooper ◽  
Benjamin K. Koama ◽  
Edwige Guissou ◽  
...  

Abstract Background Besides feeding on blood, females of the malaria vector Anopheles gambiae sensu lato readily feed on natural sources of plant sugars. The impact of toxic secondary phytochemicals contained in plant-derived sugars on mosquito physiology and the development of Plasmodium parasites remains elusive. The focus of this study was to explore the influence of the alkaloid ricinine, found in the nectar of the castor bean Ricinus communis, on the ability of mosquitoes to transmit Plasmodium falciparum. Methods Females of Anopheles gambiae and its sibling species Anopheles coluzzii were exposed to ricinine through sugar feeding assays to assess the effect of this phytochemical on mosquito survival, level of P. falciparum infection and growth rate of the parasite. Results Ricinine induced a significant reduction in the longevity of both Anopheles species. Ricinine caused acceleration in the parasite growth rate with an earlier invasion of the salivary glands in both species. At a concentration of 0.04 g l−1 in An. coluzzii, ricinine had no effect on mosquito infection, while 0.08 g l−1 ricinine-5% glucose solution induced a 14% increase in An. gambiae infection rate. Conclusions Overall, our findings reveal that consumption of certain nectar phytochemicals can have unexpected and contrasting effects on key phenotypic traits that govern the intensity of malaria transmission. Further studies will be required before concluding on the putative role of ricinine as a novel control agent, including the development of ricinine-based toxic and transmission-blocking sugar baits. Testing other secondary phytochemicals in plant nectar will provide a broader understanding of the impact which plants can have on the transmission of vector-borne diseases. Graphical abstract


Author(s):  
Shamim Mushtaq

Uninhibited proliferation and abnormal cell cycle regulation are the hallmarks of cancer. The main role of cyclin dependent kinases is to regulate the cell cycle and cell proliferation. These protein kinases are frequently down regulated or up regulated in various cancers. Two CDK family members, CDK 11 and 12, have contradicting views about their roles in different cancers. For example, one study suggests that the CDK 11 isoforms, p58, inhibits growth of breast cancer whereas, the CDK 11 isoform, p110, is highly expressed in breast tumor. Studies regarding CDK 12 show variation of opinion towards different parts of the body, however there is a consensus that upregulation of cdk12 increases the risk of breast cancer. Hence, CDK 11 and CDK 12 need to be analyzed to confirm their mechanism and their role regarding therapeutics, prognostic value, and ethnicity in cancer. This article gives an outline on both CDKs of information known up to date from Medline, PubMed, Google Scholar and Web of Science search engines, which were explored and thirty relevant researches were finalized.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nwamaka Oluchukwu Akpodiete ◽  
Frédéric Tripet

Abstract Background The sibling species of the malaria mosquito, Anopheles gambiae (sensu stricto) and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow. Divergent larval ecological adaptations, resulting in Genotype-by-Environment (G × E) interactions, have been proposed as important drivers of speciation in these species. In West Africa, An. coluzzii tends to be associated with permanent man-made larval habitats such as irrigated rice fields, which are typically more eutrophic and mineral and ammonia-rich than the temporary rain pools exploited by An. gambiae (s.s.) Methods To highlight G × E interactions at the larval stage and their possible role in ecological speciation of these species, we first investigated the effect of exposure to ammonium hydroxide and water mineralisation on larval developmental success. Mosquito larvae were exposed to two water sources and increasing ammonia concentrations in small containers until adult emergence. In a second experiment, larval developmental success was compared across two contrasted microcosms to highlight G × E interactions under conditions such as those found in the natural environment. Results The first experiment revealed significant G × E interactions in developmental success and phenotypic quality for both species in response to increasing ammonia concentrations and water mineralisation. The An. coluzzii strain outperformed the An. gambiae (s.s.) strain under limited conditions that were closer to more eutrophic habitats. The second experiment revealed divergent crisscrossing reaction norms in the developmental success of the sibling species in the two contrasted larval environments. As expected, An. coluzzii had higher emergence rates in the rice paddy environment with emerging adults of superior phenotypic quality compared to An. gambiae (s.s.), and vice versa, in the rain puddle environment. Conclusions Evidence for such G × E interactions lends support to the hypothesis that divergent larval adaptations to the environmental conditions found in man-made habitats such as rice fields in An. coluzzii may have been an important driver of its ecological speciation.


1998 ◽  
Vol 3 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Louis Clément Gouagna ◽  
Louis Clément Gouagna ◽  
Bert Mulder ◽  
Bert Mulder ◽  
Elisabeth Noubissi ◽  
...  

Author(s):  
Kinley Wangdi ◽  
Kinley Penjor ◽  
Tobgyal ◽  
Saranath Lawpoolsri ◽  
Ric N. Price ◽  
...  

Malaria in Bhutan has fallen significantly over the last decade. As Bhutan attempts to eliminate malaria in 2022, this study aimed to characterize the space–time clustering of malaria from 2010 to 2019. Malaria data were obtained from the Bhutan Vector-Borne Disease Control Program data repository. Spatial and space–time cluster analyses of Plasmodium falciparum and Plasmodium vivax cases were conducted at the sub-district level from 2010 to 2019 using Kulldorff’s space–time scan statistic. A total of 768 confirmed malaria cases, including 454 (59%) P. vivax cases, were reported in Bhutan during the study period. Significant temporal clusters of cases caused by both species were identified between April and September. The most likely spatial clusters were detected in the central part of Bhutan throughout the study period. The most likely space–time cluster was in Sarpang District and neighboring districts between January 2010 to June 2012 for cases of infection with both species. The most likely cluster for P. falciparum infection had a radius of 50.4 km and included 26 sub-districts with a relative risk (RR) of 32.7. The most likely cluster for P. vivax infection had a radius of 33.6 km with 11 sub-districts and RR of 27.7. Three secondary space–time clusters were detected in other parts of Bhutan. Spatial and space–time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Operational research to understand the drivers of residual transmission in hotspot sub-districts will help to overcome the final challenges of malaria elimination in Bhutan.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Armel Djènontin ◽  
Aziz Bouraima ◽  
Christophe Soares ◽  
Seun Egbinola ◽  
Gilles Cottrell

Abstract Objective In the framework of EVALMOUS study aiming to assess the use and effectiveness of mosquito nets by pregnant women and other members of their household in a lagoon area in southern Benin, the behaviour of pregnant women relative to the time they go to bed using the net were recorded. Malaria vectors biting rhythm, Plasmodium falciparum infection and insecticide resistance genes in malaria vectors were also determined. Results Overall, 3848 females of Anopheles gambiae s. l were collected and 280 pregnant women responded to the survey. Almost all Anopheles gambiae s. l. tested were Anopheles coluzzi Coetzee and Wilkerson 2013 (Diptera: Culicidae). The CSP index in malaria vector was 1.85% and the allelic frequency of kdr gene was 74.4%. Around 90% of bites and Plasmodium falciparum Welch, 1897 (Haemosporida: Plasmodiidae) transmission occurred between 10 p.m. and 6 a.m., which coincides with the period when more than 80% of pregnant women were under bednet. Despite a slight early evening and early morning biting activity of malaria vectors in the study area, the good use of nets might remain a useful protection tool against mosquito biting and malaria transmission.


Sign in / Sign up

Export Citation Format

Share Document