breeding habitats
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 75)

H-INDEX

20
(FIVE YEARS 2)

Biologia ◽  
2021 ◽  
Author(s):  
Ismail Mansouri ◽  
Wafae Squalli ◽  
Hamid Achiban ◽  
Mohamed Mounir ◽  
Lahsen El Ghadraoui ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Isabel Byrne ◽  
Kallista Chan ◽  
Edgar Manrique ◽  
Jo Lines ◽  
Rosine Z. Wolie ◽  
...  

Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission. The typical breeding habitats of Africa’s second most important malaria vector Anopheles funestus are large, semipermanent water bodies, which make them potential candidates for targeted larval source management. This is a technical workflow for the integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise An. funestus breeding sites near two villages in an agricultural setting in Côte d’Ivoire. Using satellite remote sensing data, we developed an environmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from June to August 2021. To categorise the drone imagery, we also developed a land cover classification scheme with classes relative to An. funestus breeding ecology. We sampled 189 potential breeding habitats, of which 119 (63%) were positive for the Anopheles genus and nine (4.8%) were positive for An. funestus. We mapped 30.42 km2 of the region of interest including all water bodies which were sampled for larvae. These data can be used to inform targeted vector control efforts, although its generalisability over a large region is limited by the fine-scale nature of this study area. This paper develops protocols for integrating drone surveys and statistically rigorous entomological sampling, which can be adjusted to collect data on vector breeding habitats in other ecological contexts. Further research using data collected in this study can enable the development of deep-learning algorithms for identifying An. funestus breeding habitats across rural agricultural landscapes in Côte d’Ivoire and the analysis of risk factors for these sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christophe Antonio-Nkondjio ◽  
P. Doumbe-Belisse ◽  
L. Djamouko-Djonkam ◽  
C. S. Ngadjeu ◽  
A. Talipouo ◽  
...  

AbstractThe rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fixed and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied every 2 weeks in all standing water collection points. The anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14–0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hudson Onen ◽  
Robinson Odong ◽  
Moses Chemurot ◽  
Frédéric Tripet ◽  
Jonathan K. Kayondo

Abstract Background Malaria is often persistent in communities surrounded by mosquito breeding habitats. Anopheles gambiae sensu lato exploit a variety of aquatic habitats, but the biotic determinants of its preferences are poorly understood. This study aimed to identify and quantify macroinvertebrates in different habitat types with determined water physico-chemical parameters to establish those preferred by An. gambiae s.l. larvae as well as their predators and competitors. Methods A field survey was conducted in Kibuye and Kayonjo villages located in the vicinity of the River Sezibwa, north-eastern Uganda to identify Anopheline larval habitats shared by aquatic insects. Habitats were geo-recorded and as streams, ponds, temporary pools and roadside ditches. From October to December 2017, random microhabitats/quadrats were selected from each habitat type, their water physico-chemical parameters (electrical conductivity, total dissolved solids, temperature and pH) were measured, and they were sampled for macroinvertebrates using standard dippers. All collected arthropod macroinvertebrates were then morphologically identified to family level and enumerated. Results Principal component analysis showed that the four larval habitat types were characterized by distinct physico-chemical parameter profiles. Ponds and streams had the highest number and diversity of macroinvertebrate insect taxa and sustained few An. gambiae s.l. larvae. Anopheles gambiae s.l. were more common in roadside ditches and particularly abundant in temporary pools which it commonly shared with Dytiscidae (predaceous diving beetles) and Culex spp. Cluster correlation analysis conducted on the abundance of these taxa within quadrats suggested that An. gambiae s.l. and Dytiscidae have the most similar patterns of microhabitat use, followed by Cybaeidae (water spiders). Whilst Culex spp. co-occurred with An. gambiae s.l. in some habitats, there was only partial niche overlap and no clear evidence of competition between the two mosquito taxa. Conclusions Ponds and streams are habitats that host the largest diversity and abundance of aquatic insect taxa. Anopheles gambiae s.l. larvae distinctively preferred temporary pools and roadside ditches, where they were exposed to few predators and no apparent competition by Culex spp. Further studies should aim to test the impact of Dytiscidae and Cybaeidae on An. gambiae s.l. dynamics experimentally. Graphical Abstract


Author(s):  
Sari Holopainen ◽  
Veli-Matti Väänänen ◽  
Mia Vehkaoja ◽  
Anthony D. Fox

AbstractSeveral alien predator species have spread widely in Europe during the last five decades and pose a potential enhanced risk to native nesting ducks and their eggs. Because predation is an important factor limiting Northern Hemisphere duck nest survival, we ask the question, do alien species increase the nest loss risk to ground nesting ducks? We created 418 artificial duck nests in low densities around inland waters in Finland and Denmark during 2017–2019 and monitored them for seven days after construction using wildlife cameras to record whether alien species visit and prey on the nests more often than native species. We sampled various duck breeding habitats from eutrophic agricultural lakes and wetlands to oligotrophic lakes and urban environments. The results differed between habitats and the two countries, which likely reflect the local population densities of the predator species. The raccoon dog (Nyctereutes procyonoides), an alien species, was the most common mammalian nest visitor in all habitats and its occurrence reduced nest survival. Only in wetland habitats was the native red fox (Vulpes vulpes) an equally common nest visitor, where another alien species, the American mink (Neovison vison), also occurred among nest visitors. Although cautious about concluding too much from visitations to artificial nests, these results imply that duck breeding habitats in Northern Europe already support abundant and effective alien nest predators, whose relative frequency of visitation to artificial nests suggest that they potentially add to the nest predation risk to ducks over native predators.


2021 ◽  
pp. 1954-1959
Author(s):  
Budi Mulyaningsih ◽  
Sitti Rahmah Umniyati ◽  
Suwarno Hadisusanto ◽  
Erwin Edyansyah

Background and Aim: Brugia malayi is known to be zoonotically important because it can be transmitted from animals (mammals and primates) to humans or from humans to humans through mosquito vectors. This study was conducted to explore the fauna associated with Malayan filariasis transmission in Sedang village, Suak Tapeh District, Banyuasin Regency, South Sumatra Province, Indonesia. Materials and Methods: A cross-sectional research design with an observational and analytical approach was applied in this study, and it was conducted in May 2018. Mosquitoes were collected twice using human bait both inside and outside the house from 6:00 p.m. to 6:00 a.m. The presence of competitors, predators, and reservoir hosts in the areas of five breeding habitats of Mansonia spp. was observed. The presence of microfilaria was confirmed under a microscope in night blood samples of inhabitants and cats. The presence of infective larvae (L3) of B. malayi was identified microscopically and based on the polymerase chain reaction method in female Mansonia mosquitoes. Results: A total of 12 mosquito species were found, among which Mansonia uniformis was the dominant mosquito, and the predominant competitor was Mansonia annulifera. Dragonflies, as predators were found in two breeding habitats and fish were found in one breeding habitat. The L3 of B. malayi were not identified in the mosquitoes, and the microfilariae of B. malayi were not found in the blood samples of inhabitants and cats. Conclusion: Although Mansonia mosquito population was abundant in Banyuasin Regency, the mosquito was not confirmed as an intermediate host of B. malayi, and the cat was not confirmed as a reservoir of B. malayi in the location.


2021 ◽  
Author(s):  
Fernando A. Faria ◽  
Márcio Repenning ◽  
Guilherme Nunes ◽  
Nathan R. Senner ◽  
Leandro Bugoni

2021 ◽  
Author(s):  
Christophe Antonio-Nkondjio ◽  
Patricia Doumbe-Belisse ◽  
Landre Djamouko-Djonkam ◽  
Carmene Sandra Ngadjeu ◽  
Abdou Talipouo ◽  
...  

Abstract The rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fix and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax®G combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied twice per month in all standing water collection points. The biting anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of over 85% of habitats with anopheline larvae. The application of the larvicide also resulted in a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14–0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study also assessed the impact of the microbial larvicide on non-target organisms and registered no significant impact of the larvicide VectoMax on the aquatic microfauna diversity. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment.


2021 ◽  
Author(s):  
Nicholas A. Farmer ◽  
Jennifer C. Doerr

AbstractQueen conch are among the most economically, socially, and culturally important fishery resources in the Caribbean. Despite a multitude of fisheries management measures enacted across the region, populations are depleted and failing to recover. It is believed that queen conch are highly susceptible to depensatory processes, impacting reproductive success and contributing to the lack of recovery. We developed a model of reproductive dynamics to evaluate how variations in biological factors such as population density, movement speeds, movement restrictions, rest periods between mating events, sexual facilitation, and perception of conspecifics affect reproductive success and overall reproductive output. We compared simulation results to empirical observations of mating and spawning frequencies from conch populations in the central Bahamas and Florida Keys. Our results confirm that low probability of mate finding associated with decreased population density is the primary driver behind observed breeding behavior in the field, although additional factors also play important roles. In particular, sexual facilitation and perception of conspecifics may explain observed lack of mating at low densities and differences between mating frequencies in the central Bahamas and Florida Keys, respectively. Our simulations suggest densities greater than 200 adults/ha are needed for high levels of spawning output, supporting the suggestion that effective management strategies for queen conch should aim to protect high-density reproductive aggregations and critical breeding habitats.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Isaac A. Hinne ◽  
Simon K. Attah ◽  
Benedicta A. Mensah ◽  
Akua O. Forson ◽  
Yaw A. Afrane

Abstract Background Understanding the ecology of larval malaria and lymphatic filariasis mosquitoes in a changing environment is important in developing effective control tools or programmes. This study characterized the breeding habitats of Anopheles mosquitoes in rural communities in different ecological zones in Ghana during the dry and rainy seasons. Methods The spatio-temporal distribution, species composition, and abundance of larval Anopheles mosquitoes in breeding habitats were studied in five locations in three ecological zones of Ghana. These were Anyakpor (coastal savannah area), Duase (forest area), and Libga, Pagaza, and Kpalsogu (Sahel savannah area). Larvae were collected using standard dippers and were raised in the insectary for identification. Results Out of a total of 7984 mosquito larvae collected, 2152 (27.26%) were anophelines and were more abundant in the rainy season (70.82%) than in the dry season (29.18%). The anophelines comprised 2128 (98.88%) An. gambiae s.l., 16 (0.74%) An. rufipes, and 8 (0.37%) An. pharoensis. In the coastal savannah and forest zones, dug-out wells were the most productive habitat during the dry (1.59 larvae/dip and 1.47 larvae/dip) and rainy seasons (11.28 larvae/dip and 2.05 larvae/dip). Swamps and furrows were the most productive habitats in the Sahel savannah zone during the dry (0.25 larvae/dip) and rainy (2.14 larvae/dip) seasons, respectively. Anopheles coluzzii was the most abundant sibling species in all the ecological zones. Anopheles melas and An. arabiensis were encountered only in the coastal savannah and the Sahel savannah areas, respectively. Larval habitat types influenced the presence of larvae as well as larval density (p < 0.001). The land-use type affected the presence of Anopheles larvae (p = 0.001), while vegetation cover influenced larval density (p < 0.05). Conclusion The most productive habitats were dug-out wells in the coastal savannah and forest zones, and furrows from irrigated canals in the Sahel savannah zone. Anopheles coluzzii was the predominant vector species in all the ecological zones. The abundance of Anopheles breeding habitats and larvae were influenced by anthropogenic activities. Encouraging people whose activities create the larval habitats to become involved in larval source management such as habitat manipulation to stop mosquito breeding will be important for malaria and lymphatic filariasis control.


Sign in / Sign up

Export Citation Format

Share Document