Nonlinear Rheology at Shallow Depths with Reference to the 2016 Kumamoto Earthquakes

2019 ◽  
Vol 109 (6) ◽  
pp. 2674-2690 ◽  
Author(s):  
Norman H. Sleep ◽  
Nori Nakata

Abstract Strong S waves produce dynamic stresses, which bring the shallow subsurface into nonlinear inelastic failure. We examine implications of nonlinear viscous flow, which may be appropriate for shallow muddy soil, and contrast them with those of Coulomb friction within a shallow reverberating uppermost layer with low‐seismic velocities. Waves refract into essentially vertical paths at the shallow layers and produce tractions on horizontal planes. The Coulomb ratio of shear traction to lithostatic stress for S waves equals the resolved horizontal acceleration normalized to the acceleration of gravity. The ratio of dynamic vertical normal traction to lithostatic stresses is the vertical normalized acceleration from P waves. The predicted viscous inelastic strain rate in muddy soil begins at low normalized accelerations and then increases mildly and nonlinearly with increasing normalized acceleration. Failure is unaffected when P waves decrease the vertical normal traction. Seismic waves recorded at KiK‐net station KMMH16 for the 2016 Kumamoto mainshock and strong foreshock show these effects. Inelastic deformation commences at a normalized horizontal acceleration of ∼0.25 and reduces S‐ and P‐wave velocities within the uppermost ∼15  m reverberating layer. Normalized horizontal accelerations and the Coulomb stress ratio reach ∼1.25. Strong S waves arrived even when strong P waves produced vertical tension on horizontal planes. In contrast, inelastic Coulomb failure commences at a normalized horizontal acceleration equal to the effective coefficient of friction; rapid inelastic strain precludes even higher accelerations. Furthermore, horizontal planes should fail from the stresses of strong S waves during the tensional cycle of strong P waves.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.



Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. T221-T231 ◽  
Author(s):  
Christine E. Krohn ◽  
Thomas J. Murray

The top 6 m of the near surface has a surprisingly large effect on the behavior of P- and S-waves. For unconsolidated sediments, the P-wave velocity gradient and attenuation can be quite large. Computer modeling should include these properties to accurately reproduce seismic effects of the near surface. We have used reverse VSP data and computer simulations to demonstrate the following effects for upgoing P-waves. Near the surface, we have observed a large time delay, indicating low velocity ([Formula: see text]), and considerable pulse broadening, indicating high attenuation ([Formula: see text]). Consequently, shallowly buried geophones have greater high-frequency bandwidth compared with surface geophones. In addition, there is a large velocity gradient in the shallow near surface (factor of 10 in 5 m), resulting in the rotation of P-waves to the vertical with progressively smaller amplitudes recorded on horizontal phones. Finally, we have found little indication of a reflection or ghost from the surface, although downgoing reflections have been observed from interfaces within the near surface. In comparison, the following have been observed for upgoing S-waves: There is a small increase in the time delay or pulse broadening near the surface, indicating a smaller velocity gradient and less change in attenuation. In addition, the surface reflection coefficient is nearly one with a prominent surface ghost.



Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

Reflected P‐to‐P and P‐to‐S converted seismic waves in a two‐component elastic common‐source gather generated with a P‐wave source in a two‐dimensional model can be imaged by two independent scalar reverse‐time depth migrations. The inputs to migration are pure P‐ and S‐waves that are extracted by divergence and curl calculations during (shallow) extrapolation of the elastic data recorded at the earth’s surface. For both P‐to‐P and P‐to‐S converted reflected waves, the imaging time at each point is the P‐wave traveltime from the source to that point. The extracted P‐wave is reverse‐time extrapolated and imaged with a P‐velocity model, using a finite difference solution of the scalar wave equation. The extracted S‐wave is reverse‐time extrapolated and imaged similarly, but with an S‐velocity model. Converted S‐wave data requires a polarity correction prior to migration to ensure constructive interference between data from adjacent sources. Synthetic examples show that the algorithm gives satisfactory results for laterally inhomogeneous models.



2020 ◽  
Author(s):  
Louise Watremez ◽  
Sylvie Leroy ◽  
Elia d'Acremont ◽  
Stéphane Rouzo

<p>The Gulf of Aden is a young and active oceanic basin, which separates the south-eastern margin of the Arabian Plate from the Somali Plate. The rifting leading to the formation of the north-eastern Gulf of Aden passive margin started ca. 34 Ma ago when the oceanic spreading in this area initiated at least 17.6 Ma ago. The opening direction (N26°E) is oblique to the mean orientation of the Gulf (N75°E), leading to a strong structural segmentation.</p><p>The Encens cruise (2006) allowed for the acquisition of a large seismic refraction dataset with profiles across (6 lines) and along (3 lines) the margin, between the Alula-Fartak and Socotra-Hadbeen fracture zones, which define a first order segment of the Gulf. P-wave velocity modelling already allowed us to image the crustal thinning and the structures, from continental to oceanic domains, along some of the profiles. A lower crustal intermediate body is observed in the Ashawq-Salalah segment, at the base of the transitional and oceanic crusts. The nature of this intermediate body is most probably mafic, linked to a post-rift thermal anomaly. The thin (1-2 km) sediment layer in the study area allows for a clear conversion of P-waves to S-waves at the top basement. Thus, most seismic refraction records show very clear S-wave arrivals.</p><p>In this study, we use both P-wave and S-wave arrivals to delineate the crustal structures and segmentation along and across the margin and add insight into the nature of the rocks below the acoustic basement. P-wave velocity modelling allows for the delineation of the structure variations across and along the margin. The velocity models are used as a base for the S-wave modelling, through the definition of Poisson’s ratios in the different areas of the models. Picking and modelling of S-wave arrivals allow us to identify two families of converted waves: (1) seismic waves converted at the basement interface on the way up, just before arriving to the OBS and (2) seismic waves converted at the basement on the way down, which travelled into the deep structures as S-waves. The first set of arrivals allows for the estimation the S-wave velocities (Poisson’s ratio) in the sediments, showing that the sediments in this area are unconsolidated and water saturated. The second set of arrivals gives us constraints on the S-wave velocities below the acoustic basement. This allows for an improved mapping of the transitional and oceanic domains and the confirmation of the mafic nature of the lower crustal intermediate body.</p>



Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 40-57 ◽  
Author(s):  
Robert R. Stewart ◽  
James E. Gaiser ◽  
R. James Brown ◽  
Don C. Lawton

Converted seismic waves (specifically, downgoing P‐waves that convert on reflection to upcoming S‐waves are increasingly being used to explore for subsurface targets. Rapid advancements in both land and marine multicomponent acquisition and processing techniques have led to numerous applications for P‐S surveys. Uses that have arisen include structural imaging (e.g., “seeing” through gas‐bearing sediments, improved fault definition, enhanced near‐surface resolution), lithologic estimation (e.g., sand versus shale content, porosity), anisotropy analysis (e.g., fracture density and orientation), subsurface fluid description, and reservoir monitoring. Further applications of P‐S data and analysis of other more complicated converted modes are developing.



2009 ◽  
Vol 24 (16n17) ◽  
pp. 3191-3225 ◽  
Author(s):  
KOJI HARADA ◽  
HIROFUMI KUBO ◽  
ATSUSHI NINOMIYA

We extend our Wilsonian renormalization group (RG) analysis on the pionless nuclear effective field theory in the two-nucleon sector in two ways; on the one hand, (1) we enlarge the space of operators up to including those of [Formula: see text] in the S waves, and, on the other hand, (2) we consider the RG flows in higher partial waves (P and D waves). In the larger space calculations, we find, in addition to nontrivial fixed points, two "fixed lines" and a "fixed surface" which are related to marginal operators. In the higher partial wave calculations, we find similar phase structures to that of the S waves, but there are two relevant directions in the P waves at the nontrivial fixed points and three in the D waves. We explain the physical meaning of the P-wave phase structure by explicitly calculating the low-energy scattering amplitude. We also discuss the relation between the Legendre flow equation which we employ and the RG equation by Birse, McGovern and Richardson, and possible implementation of power divergence subtraction in higher partial waves.



Geophysics ◽  
1992 ◽  
Vol 57 (11) ◽  
pp. 1444-1452 ◽  
Author(s):  
Guy W. Purnell

High‐velocity layers (HVLs) often hinder seismic imaging of deeper reflectors using conventional techniques. A major factor is often the unusual energy partitioning of waves incident at an HVL boundary from lower‐velocity material. Using elastic physical modeling, I demonstrate that one effect of this factor is to limit the range of dips beneath an HVL that can be imaged using unconverted P‐wave arrivals. At the same time, however, partitioning may also result in P‐waves outside the HVL coupling efficiently with S‐waves inside. By exploiting some of the waves that convert upon transmission into and/or out of the physical‐model HVL, I am able to image a much broader range of underlying dips. This is accomplished by acoustic migration tailored (via the migration velocities used) for selected families of converted‐wave arrivals.



2020 ◽  
Vol 8 (6) ◽  
pp. 1785-1794

The objective of the current investigations is to estimate the dynamic geotechnical properties necessary for evaluating the conditions of the subsurface in order to make better decisions for economic and safe designs of the proposed structures at a Steel Rolling Factory, Ataqa Industrial Area, Northwestern Gulf of Suez, Egypt. To achieve this purpose, four seismic refraction profiles were conducted to measure the velocity of primary seismic waves (P-waves) and four profiles were conducted using Multichannel Analysis of Surface Waves (MASW) technique in the same locations of refraction profiles to measure the velocity of shear waves (S-waves). SeisImager/2D Software Package was used in the analysis of the measured data. Data processing and interpretation reflect that the subsurface section in the study area consists of two layers, the first layer is a thin surface layer ranges in thickness from 1 to 4 meters with P-wave velocity ranges from 924 m/s to 1247 m/s and S-wave velocity ranges from 530 m/s to 745 m/s. The second layer has a P-wave velocity ranges from 1277 m/s to 1573 m/s and the S-wave velocity ranges from 684 m/s to 853 m/s. Geotechnical parameters were calculated for both layers. Since elastic moduli such as Poisson’s ratio, shear modulus, Young’s modulus, and bulk’s modulus were calculated. Competence scales such as material index, stress ratio, concentration index, and density gradient were calculated also. In addition, the ultimate and allowable bearing capacities



2019 ◽  
Vol 486 (2) ◽  
pp. 237-242
Author(s):  
I. P. Kuzin ◽  
L. I. Lobkovskiy ◽  
K. A. Dozorova

The results of coseismic GPS observations in the epicentral area of 2013 Sea-of- Okhotsk earthquake are presented and specific features of seismic waves amplitudes variations with distance are detected basing on the records of Russian and international seismic stations. Global propagation of P-waves for the Sea-of-Okhotsk and Bolivian (09.06.1994) earthquakes was studied and their amplitudes on teleseismic distances were estimated.



1995 ◽  
Vol 85 (1) ◽  
pp. 254-268 ◽  
Author(s):  
Jie Zhang ◽  
Charles A. Langston

Abstract Teleseismic broadband P and S waves recorded at the NARS station NE06 (Dourbes, Belgium) are shown to exhibit strong anomalous particle motion not attributable to instrument miscalibration or malfunction. Azimuthally varying radial and tangential components have been observed on 38 recordings after vector rotation of horizontal P waves into the ray direction. The tangenital P waves attain amplitudes comparable to the radial components from the east with negative polarity and west with positive polarity, but tend to be zero in the north and south, suggesting major discontinuities in the crust dipping southward. The SH wave from the east contains a large SPmP phase, an S-to-P conversion at the free surface and then reflected back to the surface from the Moho. The polarity of this SPmP phase presents further evidence for a southward-dipping Moho. We employ ray theory for three-dimensionally dipping interfaces to compute the P-wave response. Linear inverse theory with smoothness constraints is applied to the simultaneous inversions of P-wave receiver functions for four different backazimuths. Through the progressive change of interface strike and dip and the inversion of layer shear-wave velocities, a dipping crustal model that is consistent with both the observed waveforms and results of previous local geophysical surveys has been determined. The results suggest a large velocity contrast in the shallow structure near the surface, another major interface at a depth of 12 km with dip of 10°, and a seismically transparent unit below the interface. The interface at a depth of 12 km reportedly emerges at the Midi fault 50 km north of the station NE06.



Sign in / Sign up

Export Citation Format

Share Document