Effects of Initial Stress Field and Critical Slip-Weakening Distance on Rupture Selectivity of 3D Buried Branched Faults

2020 ◽  
Vol 110 (2) ◽  
pp. 816-824
Author(s):  
Feng Qian ◽  
Haiming Zhang

ABSTRACT Using the boundary integral equation method with the slip-weakening friction law, we investigate the effects of the initial stress field and the critical slip-weakening distance on the rupture selectivity on the 3D buried branched faults. The numerical results show that after reaching the bifurcation line between the main fault and the branched faults, rupture continues to propagate on one or both bifurcation planes (BPs), with rupture on one plane more favorable than the other. The initial stress distribution plays a decisive role in the selection of the favorable BP (FBP), and there is a critical status of stress distribution, around which rupture propagates on both planes, whereas the FBP switches between the two. For a given fault geometry, the critical status of initial stress, which is described by a ratio Fp between normal stresses, is related to the critical slip-weakening distance Dc.

1999 ◽  
Vol 563 ◽  
Author(s):  
X. H. Wang ◽  
K. Shyu ◽  
C.-T. Chang ◽  
D. W. Zheng ◽  
Weijia Wen

AbstractA methodology to study the stress distribution of a patterned thin film residing on a silicon wafer was developed. Si underlying the pattern was thinned down through etching so that the deformation caused by residual stress in the microstructure could be detected by a Twyman- Green interferometer. A procedure called "numerical etching" was implemented to simulate the etching process, which linked the stress state of the microstructure on a regular wafer to that on a Si diaphragm. An initial stress field on the pattern was assumed, and its effect on the deformation of the Si diaphragm beneath was calculated and compared with experimental results. The discrepancy between them was used to modify the initially assumed stress field and repeated until a satisfactory match was achieved. The stress field from numerical analysis accurately predicts the actual stress distribution in and around the patterned structure under investigation. The stress distribution in a Ti pad on a Si3N4/ SiO2/Si composite diaphragm is used as an example.


2011 ◽  
Vol 243-249 ◽  
pp. 3223-3228
Author(s):  
Zhong Fu Wang ◽  
Han Dong Liu ◽  
Tong Jiang ◽  
Si Wei Wan

Based on geological condition of underground factory building in Hohhot pumped storage power station, research and analysis are taken for the fundamental element which affect initial stress field, 3D finite element model of underground factory building is build for the analysis. Beigin with regrssion analysis, adopt linear elasticity caculation of finite element method to take linear regression analysis, and obtain range of optimized parameters. Adopt homogeneous design to definite various assemblies of optimized parameters at different levels. Obtain training sample by elasto plastic caculation of finite element, train for RBF model in oder to get inverse model of ground stress field. The calculation result shown that: RBF model overcome the disadvantages such as slow calculating speed and overfitting of BP model, and it could obtain distrubution rule of initial stress filed by inverse analysis in a reasonable way.


Author(s):  
H.-B. Liu ◽  
Y.-P. Li ◽  
Y.-Q. Wang ◽  
X.-J. Sheng

To characterize the residual stress distribution is very crucial for workpiece fatigue lifetime and structural integrity assessment. An energy-based residual stress field reconstruction approach using limited measurements is proposed. Firstly, the Ferguson spline interpolation technique is employed as the stress interpolation base of the 2-order stress tensor. Then, an initial stress field can be reconstructed using the overall boundary conditions by minimizing strain energy. Further, the stress distribution is modified according to strain compatibility equation. At last, a typical stress unit from the artificial stress field constructed by FEM, was picked up as an input set to verify the validation of the developed model and algorithm numerically. It was demonstrated that the energy-based scheme was efficient and reliable to reconstruct the residual stress field from limited measurements.


1983 ◽  
Vol 50 (2) ◽  
pp. 367-372 ◽  
Author(s):  
S. R. Lin ◽  
T. H. Lin

On single aluminum crystals under cyclic loadings, fresh slip lines appeared during the reversed loading, lying very close to, but not coincident with the slip lines formed in the forward loading. These slip lines indicate the start of extrusion or intrusion as commonly observed in fatigue specimens. An initial stress field is present in all metals. The initial stress field favorable to the aforementioned sequence of slip is one having a positive shear stress in one thin slice P and a negative one in a closely located thin slice Q. A forward loading causes a positive shear stress, which is of the same sign as the initial shear stress in P, but of opposite sign to that in Q. Hence the shear stress in P will reach the critical value first to cause slip. Due to the continuity of the stress field, slip in P relieves not only the positive shear stress in P but also in Q. This has the same effect as increasing negative shear stress in Q. During the reversed loading, Q has the highest negative shear stress and hence slides. Similarly, this slip causes P to be more ready to slide in the next forward loading. This process is repeated to cause a monotonic alternate sliding in P and Q. In this way, an extrusion or intrusion is nucleated. A crack can be started from an intrusion. The thin slices P and Q are considered to be in a most favorably oriented crystal located at a free surface. An initial stress field giving positive shear stress in P and negative in Q is calculated from an assumed initial inelastic strain field which, in turn, can be caused by distribution of dislocations. The buildup of plastic shear strain in P and Q causing the start of extrusion or intrusion is shown.


2012 ◽  
Vol 170-173 ◽  
pp. 1325-1329
Author(s):  
Zhong Fan Yuan ◽  
Pei Hua Xu ◽  
Zhao Rong Ye

At present, due to various reasons, cannot do a large number of field measurements, and the measured results often can only reflect the local stress field distribution. What’s more, the measured results has discreteness, it’s difficult to describe the law of the initial stress field distribution in the entire region. This paper combines topographic and geological conditions and the measured in-situ stress value of Jinping I hydropower station dam area, using FLAC3D4.0, select geological section profile of II1 exploration line for reference, to simulate the incised process of the valley. We get the stress field distribution when rock gravity acting alone, and exert horizontal tectonic stress based on the calculate result of gravity field in the VI terrace model. We inversion the distribution of current Valley stress field, and validate the rationality of the design after compare with the measured data. We obtain the features of stress field of current valley. And we also proved that the regional principal compressive stress plays a decisive role in the formation of the current valley stress field.


2021 ◽  
pp. 875529302110416
Author(s):  
Marc-Denis Rioux ◽  
Marie-José Nollet ◽  
Bertrand Galy

This article covers the impact of soil initial stress field heterogeneity (ISFH) in wave-passage analysis and in prescribed structural acceleration in the context of dynamic soil–structure interaction (DSSI) analysis. ISFH is directly related to the natural behavior of soil where a significant increase in net effective confinement, as is the case in the foundation soil under a building, tends to increase the soil’s modulus and strain. This creates a heterogeneous stress field in the vicinity of the foundation elements, which results in a modification of the dynamic behavior of the soil–structure system. A simple method for considering the impact of ISFH on the value of the soil’s modulus and strain was developed using the direct DSSI approach. The method was used to analyze numerical artifacts and its impact on the surface acceleration values of a nonlinear two-dimensional (2D) numerical soil deposit under transient loading. This analysis was followed by a sample application for a three-story, three-bay concrete moment-resisting frame structure erected on a deep soil deposit. Floor acceleration and relative displacement were used for comparison. The soil deposit was modeled using the typical geotechnical properties of fine-grained, post-glacial soil samples obtained in Eastern Canada from in situ geotechnical borehole drilling, geophysical surveys, and laboratory testing. Ground motion was based on eastern calibrated seismic signals. The results of the soil deposit analysis show that ISFH had a significant impact on surface acceleration values. The effect was found to be period-dependent and to have a direct impact on prescribed acceleration values at the base of structure. Thus, failure to take the effects of ISFH into consideration can lead to errors in calculating prescribed structural accelerations (i.e. over- or underestimation).


2017 ◽  
Vol 12 ◽  
pp. 37-49
Author(s):  
A.N. Shashenko ◽  
◽  
A.V. Smirnov ◽  
N.V. Khozyaykina ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document