Analysis of Near-Source Ground Motion from the 2019 Ridgecrest Earthquake Sequence

2020 ◽  
Vol 110 (4) ◽  
pp. 1495-1505 ◽  
Author(s):  
Georgios Baltzopoulos ◽  
Lucia Luzi ◽  
Iunio Iervolino

ABSTRACT The Ridgecrest seismic sequence began on 4 July 2019 in California, on a hitherto relatively unmapped orthogonal cross-faulting system, causing mainly nonstructural or liquefaction-related damage to buildings in the vicinity of Ridgecrest and Trona, and also causing substantial surface rupture. The present study considers the near-source ground-acceleration recordings collected during the two principal events of the sequence—the 4 July moment-magnitude M 6.4 foreshock and the 6 July M 7.1 mainshock—to identify pulse-like ground motions, which may have arisen due to forward rupture directivity. Pulse-like seismic input is of particular interest to earthquake engineering due to its peculiar spectral shape and possibly increased damaging potential, and expanding the strong-motion databases with such records is a topical issue. In this context, a pulse identification methodology is implemented, partially based on computer-aided signal processing, but also involving manual classification. Nine ground-motion records were classified as pulse-like by this procedure. Further investigation led to the conclusion that, for some of these records, the impulsive characteristics could most likely be attributable to forward rupture directivity, whereas for others fling step may have also been an issue. Finally, clear signs of directionality were observed in these ground motions at periods near the pulse duration, manifesting as a polarization of the spectral ordinates toward the orientation of the impulsive component.

Author(s):  
Fabio Sabetta ◽  
Antonio Pugliese ◽  
Gabriele Fiorentino ◽  
Giovanni Lanzano ◽  
Lucia Luzi

AbstractThis work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.


2021 ◽  
pp. 875529302110369
Author(s):  
Sahar Rahpeyma ◽  
Benedikt Halldorsson ◽  
Birgir Hrafnkelsson ◽  
Sigurjón Jónsson

The earthquake ground motions of over 1700 earthquakes recorded on a small-aperture strong-motion array in south Iceland (ICEARRAY I) that is situated on a relatively uniform site condition characterized as rock, exhibit a statistically significant spatial variation of ground-motion amplitudes across the array. Both earthquake and microseismic horizontal-to-vertical spectral ratios (HVSR) have been shown to exhibit distinct and in some cases, bimodal peaks in amplification, indicating site resonance at periods of 0.1–0.3 s, a phenomenon that has been attributed to a surface layer of lava rock lying above a sedimentary layer, a structure that is then repeated with depth under the array. In this study, we implement a Bayesian hierarchical model (BHM) of the seismic ground motions that partitions the model residuals into earthquake event term, station term, and event–station term. We analyzed and compared peak ground acceleration (PGA) with the 5% damped pseudo-acceleration response spectrum (PSA) at oscillator periods of T = 0.05–1.0 s. The results show that the event terms, dominate the total variability of the ground-motion amplitudes over the array. However, the station terms are shown to increase in the period range of 0.1–0.3 s on most stations and to different extents, leading to an increase in the overall variability of ground motions at those periods, captured by a larger inter-station standard deviation. As the station terms are a measure of how much the ground motions at those stations deviate from the array average, they act as proxies for localized site effects and amplification factors. These results, improve our understanding of the key factors that affect the variation of seismic ground motions across the relatively small area of ICEARRAY I. This approach can help to improve the accuracy of earthquake hazard assessments on local scales, which in turn could contribute to more refined seismic risk assessments and engineering decision-making.


1987 ◽  
Vol 3 (2) ◽  
pp. 263-287 ◽  
Author(s):  
N. A. Abrahamson ◽  
B. A. Bolt ◽  
R. B. Darragh ◽  
J. Penzien ◽  
Y. B. Tsai

SMART 1 is the first large digital array of strong-motion seismographs specially designed for engineering and seismological studies of the generation and near-field properties of earthquakes. Since the array began operation in September 1980, it has recorded over 3000 accelerogram traces from 48 earthquakes ranging in local magnitude ( ML) from 3.6 to 7.0. Peak ground accelerations have been recorded up to 0.33g and 0.34g on the horizontal and vertical components, respectively. Epicentral distances have ranged from 3 km 200 km from the array center, and focal depths have ranged from shallow to 100 km. The recorded earthquakes had both reverse and strike-slip focal mechanisms associated with the subduction zone and transform faults. These high quality, digital, ground motions provide a varied resource for earthquake engineering research. Earthquake engineering studies of the SMART 1 ground motion data have led to advances in knowledge in several cases: for example, on frequency-dependent incoherency of free-surface ground motions over short distances, on response of linear systems to multiple support excitations, on attenuation of peak ground-motion parameters and response spectra, on site torsion and phasing effects, and on the identification of wave types. Accelerograms from individual strong-motion seismographs do not, in general, provide such information. This review describes the SMART 1 array and the recorded earthquakes with special engineering applications. Also, it tabulates the unfiltered peak array accelerations, displays some of the recorded ground motion time histories, and summarizes the main engineering research that has made use of SMART 1 data.


2012 ◽  
Vol 256-259 ◽  
pp. 2117-2121
Author(s):  
Li Lin ◽  
Rui Zhi Wen ◽  
Bao Feng Zhou ◽  
Da Cheng Shi

In this paper, PEER Ground Motion Databases (PGMD) at the Pacific Earthquake Engineering Research Center (PEER) was updated by 314 sets of ground motion records of great earthquakes in recent years, which expanded the application of this database. This paper reviews alternative selection methods for strong ground motion records. The expanded database could make the different selection and scaling of strong motion records in great earthquakes, and the conditional mean spectrum (CMS) method could be applied for the strong motion records selection in structural spectrum analysis.


Author(s):  
Rajesh P. Dhakal ◽  
Sandip Singh ◽  
John B. Mander

In New Zealand, time history analysis is either the required or preferred method of assessing seismic demands for torsionally sensitive and other important structures, but the criteria adopted for the selection of ground motion records and their scaling to generate the seismic demand remains a contentious and debatable issue. In this paper, the scaling method based on the least squares fit of response spectra between 0.4-1.3 times the structure’s first mode period as stipulated in the New Zealand Standard for Structural Design Actions: Earthquake Actions (NZS1170.5) [1] is compared with the scaling methods in which ground motion records are scaled to match the peak ground acceleration (PGA) and spectral acceleration response at the natural period of the structure corresponding to the first mode with 5% of critical damping; i.e. Sa(T1, 5%). Incremental dynamic analysis (IDA) is used to measure the record-to-record randomness of structural response, which is also a measure of the efficiency of the intensity measure (IM) used. Comparison of the dispersions of IDA curves with the three different IMs; namely PGA, Sa(T1, 5%) and NZS1170.5 based IM, shows that the NZS1170.5 scaling method is the most effective for a large suite of ground motions. Nevertheless, the use of only three randomly chosen ground motions as presently permitted by NZS1170.5 is found to give significantly low confidence in the predicted seismic demand. It is thus demonstrated that more records should be used to provide a robust estimate of likely seismic demands.


2011 ◽  
Vol 27 (2) ◽  
pp. 273-291 ◽  
Author(s):  
Robert W. Graves ◽  
Brad T. Aagaard ◽  
Kenneth W. Hudnut

The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller length scales, rupture speed, and rise time were constrained using empirical relationships and experience gained from previous strong-motion modeling. Using this rupture description and a 3-D model of the crust, broadband ground motions were computed over a large region of Southern California. The largest simulated peak ground acceleration (PGA) and peak ground velocity (PGV) generally range from 0.5 to 1.0 g and 100 to 250 cm/s, respectively, with the waveforms exhibiting strong directivity and basin effects. Use of a slip-predictable model results in a high static stress drop event and produces ground motions somewhat higher than median level predictions from NGA ground motion prediction equations (GMPEs).


2020 ◽  
Vol 110 (6) ◽  
pp. 2711-2727
Author(s):  
Shota Shimmoto

ABSTRACT A small earthquake with strong rupture directivity is inappropriate to use as a point source when estimating ground motion. A source spectrum model is proposed to remove the effects of rupture directivity and finite fault size from observed earthquakes. This model is developed by using a kinematic source model of a rectangular fault with bilateral-bidirectional rupture propagation. Its amplitude spectrum is modeled to decay as ω−2 at high frequency and is approximated by its envelope to make deconvolution a stable operation. The effectiveness of the proposed spectrum model is demonstrated through application to the two aftershocks of Mw 4.0 and Mw 5.5 observed following the 2016 Kumamoto earthquake. These aftershocks had similar focal mechanisms and were located near to each other. A method to estimate the source parameters by using the proposed spectrum model is presented and its effectiveness is demonstrated. The deconvolution of the ground-motion records using a suitable source spectrum model gives us the Green’s function. The amplitude spectra of the Green’s functions obtained from both observed aftershock events are shown to be consistent. The far-field ground motions are simulated by using the Green’s functions. The simulated ground motions match well with the observed ones. Simulation of the ground motions by using the Green’s functions obtained from the deconvolution of ground-motion records by the proposed spectrum model has an advantage compared to the use of small earthquake records as empirical Green’s functions (EGFs). Specifically, this approach reduces the variation in ground-motion simulation results due to the choice of different EGFs.


2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


2021 ◽  
pp. 875529302110194
Author(s):  
Daniel Verret ◽  
Denis LeBœuf ◽  
Éric Péloquin

Eastern North America (ENA) is part of a region with low-to-moderate seismicity; nonetheless, some significant seismic events have occurred in the last few decades. Recent events have reemphasized the need to review ENA seismicity and ground motion models, along with continually reevaluating and updating procedures related to the seismic safety assessment of hydroelectric infrastructures, particularly large dams in Québec. Furthermore, recent researchers have shown that site-specific characteristics, topography, and valley shapes may significantly aggravate the severity of ground motions. To the best of our knowledge, very few instrumental data from actual earthquakes have been published for examining the site effects of hydroelectric dam structures located in eastern Canada. This article presents an analysis of three small earthquakes that occurred in 1999 and 2002 at the Denis-Perron (SM-3) dam. This dam, the highest in Québec, is a rockfill embankment structure with a height of 171 m and a length of 378 m; it is located in a narrow valley. The ground motion datasets of these earthquakes include the bedrock and dam crest three-component accelerometer recordings. Ground motions are analyzed both in the time and frequency domains. The spectral ratios and transfer functions obtained from these small earthquakes provide new insights into the directionality of resonant frequencies, vibration modes, and site effects for the Denis-Perron dam. The crest amplifications observed for this dam are also compared with previously published data for large dams. New statistical relationships are proposed to establish dam crest amplification on the basis of the peak ground acceleration (PGA) at the foundation.


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


Sign in / Sign up

Export Citation Format

Share Document