Integrate Urban‐Scale Seismic Hazard Analyses with the U.S. National Seismic Hazard Model

2018 ◽  
Vol 89 (3) ◽  
pp. 967-970 ◽  
Author(s):  
M. P. Moschetti ◽  
N. Luco ◽  
A. D. Frankel ◽  
M. D. Petersen ◽  
B. T. Aagaard ◽  
...  
Keyword(s):  
Author(s):  
M. P. Moschetti ◽  
N. Luco ◽  
A. D. Frankel ◽  
M. D. Petersen ◽  
B. T. Aagaard ◽  
...  
Keyword(s):  

2016 ◽  
Vol 87 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
Matthew C. Gerstenberger ◽  
David A. Rhoades ◽  
Graeme H. McVerry

Author(s):  
Mark Stirling ◽  
Matthew Gerstenberger ◽  
Nicola Litchfield ◽  
Graeme McVerry ◽  
Warwick Smith ◽  
...  

We present a new probabilistic seismic hazard model for the Canterbury region, the model superseding the earlier model of Stirling et al. (1999, 2001). The updated model incorporates new onshore and offshore fault data, new seismicity data, new methods for the earthquake source parameterisation of both datasets, and new methods for estimation of the expected levels of Modified Mercalli Intensity (MMI) across the region. While the overall regional pattern of estimated hazard has not changed since the earlier seismic hazard model, there have been slight reductions in hazard in some areas (western Canterbury Plains and eastern Southern Alps), coupled with significant increases in hazard in one area (immediately northeast of Kaikoura). The changes to estimated acceleration for the new versus older model serve to show the extent that major changes to a multidisciplinary source model may impact the final estimates of hazard, while the new MMI estimates show the added impact of a new methodology for calculating MMI hazard.


Author(s):  
Endra Gunawan

Abstract To estimate the hazard posed by active faults, estimates of the maximum magnitude earthquake that could occur on the fault are needed. I compare previously published scaling relationships between earthquake magnitude and rupture length with data from recent earthquakes in Indonesia. I compile a total amount of 13 literatures on investigating coseismic deformation in Indonesia, which then divided into strike-slip and dip-slip earthquake cases. I demonstrate that a different scaling relationship generates different misfit compared to data. For a practical practice of making seismic hazard model in Indonesia, this research shows the suggested reference for a scaling relationship of strike-slip and dip-slip faulting regime. On a practical approach in constructing a logic tree for seismic hazard model, using different weighting between each published earthquake scaling relationship is recommended.


2019 ◽  
Vol 36 (1) ◽  
pp. 5-41 ◽  
Author(s):  
Mark D. Petersen ◽  
Allison M. Shumway ◽  
Peter M. Powers ◽  
Charles S. Mueller ◽  
Morgan P. Moschetti ◽  
...  

During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the associated epistemic uncertainties and aleatory variabilities, and new soil amplification factors; (3) in the western United States (WUS), amplified shaking estimates of long-period ground motions at sites overlying deep sedimentary basins in the Los Angeles, San Francisco, Seattle, and Salt Lake City areas were incorporated; and (4) in the conterminous United States, seismic hazard is calculated for 22 periods (from 0.01 to 10 s) and 8 uniform VS30 maps (ranging from 1500 to 150 m/s). We also include a description of updated computer codes and modeling details. Results show increased ground shaking in many (but not all) locations across the CEUS (up to ~30%), as well as near the four urban areas overlying deep sedimentary basins in the WUS (up to ~50%). Due to population growth and these increased hazard estimates, more people live or work in areas of high or moderate seismic hazard than ever before, leading to higher risk of undesirable consequences from forecasted future ground shaking.


2010 ◽  
Vol 37 (4) ◽  
pp. 562-575 ◽  
Author(s):  
K. Goda ◽  
H. P. Hong ◽  
G. M. Atkinson

This study provides a preliminary assessment of the impact of new seismological information on the existing seismic hazard model, as implemented in the 2005 National building code of Canada (NBCC); this seismic hazard model was actually developed in the early 1990s, and thus there is significant new information available in the literature since then. A reassessment of seismic hazard is carried out by updating magnitude-recurrence relations based on the earthquake catalog up to the end of 2006, including conversion of all earthquake magnitudes to a homogenous moment magnitude scale. The recent ground-motion prediction equations, which update the knowledge base used in the 2005 NBCC, are also used. Focusing on Vancouver and Victoria, sensitivity analyses are carried out to investigate both individual and combined impacts of these updates on the uniform hazard spectra. The proposed model can be used as a guide to the direction in which future seismic hazard models for western Canada may move.


2016 ◽  
Vol 21 (7) ◽  
pp. 1113-1157 ◽  
Author(s):  
Soumya K. Maiti ◽  
Sankar K. Nath ◽  
Manik D. Adhikari ◽  
Nishtha Srivastava ◽  
Probal Sengupta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document