Lower Bounds on Ground Motion at Point Reyes during the 1906 San Francisco Earthquake from Train Toppling Analysis

2019 ◽  
Vol 90 (2A) ◽  
pp. 683-691 ◽  
Author(s):  
Swetha Veeraraghavan ◽  
Thomas H. Heaton ◽  
Swaminathan Krishnan
1992 ◽  
Vol 82 (2) ◽  
pp. 603-641 ◽  
Author(s):  
Roger D. Borcherdt ◽  
Gary Glassmoyer

Abstract Strong ground motions recorded at 34 sites in the San Francisco Bay region from the Loma Prieta earthquake show marked variations in characteristics dependent on crustal structure and local geological conditions. Peak horizontal acceleration and velocity inferred for sites underlain by “rock” generally occur on the transverse component of motion. They are consistently greater with lower attenuation rates than the corresponding mean value predicted by empirical curves based on previous strong-motion data. Theoretical amplitude distributions and synthetic seismograms calculated for 10-layer models suggest that “bedrock” motions were elevated due in part to the wide-angle reflection of S energy from the base of a relatively thin (25 km) continental crust in the region. Characteristics of geologic and geotechnical units as currently mapped for the San Francisco Bay region show that average ratios of peak horizontal acceleration, velocity and displacement increase with decreasing mean shear-wave velocity. Ratios of peak acceleration for sites on “soil” (alluvium, fill/Bay mud) are statistically larger than those for sites on “hard rock” (sandstone, shale, Franciscan Complex). Spectral ratios establish the existence of predominant site periods with peak amplifications near 15 for potentially damaging levels of ground motion at some sites underlain by alluvium and fill/bay mud. Average spectral amplifications inferred for vertical and the mean horizontal motion are, respectively, (1,1) for sites on the Franciscan Complex (KJf), (1.4, 1.5) for sites on Mesozoic and Tertiary rocks (TMzs), (2.1, 2.0) for sites on the Santa Clara Formation (QTs), (2.3, 2.9) for sites on alluvium (Qal), and (2.1, 4.0) for sites on fill/Bay mud (Qaf/Qhbm). These mean values are not statistically different at the 5% significance level from those inferred from previous low-strain data. Analyses suggest that soil amplification and reflected crustal shear energy were major contributors to levels of ground motion sufficient to cause damage to vulnerable structures at distances near 100 km in the cities of San Francisco and Oakland.


Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Arthur J. Rodgers ◽  
Monica D. Kohler ◽  
...  

ABSTRACT Ground-motion time series are essential input data in seismic analysis and performance assessment of the built environment. Because instruments to record free-field ground motions are generally sparse, methods are needed to estimate motions at locations with no available ground-motion recording instrumentation. In this study, given a set of observed motions, ground-motion time series at target sites are constructed using a Gaussian process regression (GPR) approach, which treats the real and imaginary parts of the Fourier spectrum as random Gaussian variables. Model training, verification, and applicability studies are carried out using the physics-based simulated ground motions of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earthquake in northern California. The method’s performance is further evaluated using the 2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community Seismic Network stations located in southern California. These evaluations indicate that the trained GPR model is able to adequately estimate the ground-motion time series for frequency ranges that are pertinent for most earthquake engineering applications. The trained GPR model exhibits proper performance in predicting the long-period content of the ground motions as well as directivity pulses.


1965 ◽  
Vol 2 (01) ◽  
pp. 79-87
Author(s):  
Masanobu Shinozuka

Upper and lower bounds are given for the probability that a separable random process X(t) will take values outside the interval (— λ 1, λ 2) for 0 ≦ t ≦ T, where λ 1 and λ 2 are positive constants. The random process needs to be neither stationary, Gaussian nor purely random (white noise). In engineering applications, X(t) is usually a random process decaying with time at least in the long run such as the structural response to the acceleration of ground motion due to earthquake. Numerical examples show that the present method estimates the probability between the upper and lower bounds which are sufficiently close to be useful when the random processes decay with time.


2019 ◽  
Vol 109 (4) ◽  
pp. 1265-1281 ◽  
Author(s):  
Arthur J. Rodgers ◽  
Arben Pitarka ◽  
David B. McCallen

Abstract We investigated the effects of fault geometry and assumed minimum shear wavespeed (VSmin) on 3D ground-motion simulations (0–2.5 Hz) in general, using a moment magnitude (Mw) 6.5 earthquake on the Hayward fault (HF). Simulations of large earthquakes on the northeast-dipping HF using the U.S. Geological Survey (USGS) 3D seismic model have shown intensity asymmetry with stronger shaking for the Great Valley Sequence east of the HF (hanging wall) relative to the Franciscan Complex to the west (footwall). We performed simulations with three fault geometries in both plane-layered (1D) and 3D models. Results show that the nonvertical fault geometries result in larger motions on the hanging wall relative to the vertical fault for the same Earth model with up to 50% amplifications in single-component peak ground velocity (PGV) within 10 km of the rupture. Near-fault motions on the footwall are reduced for the nonvertical faults, but less than they are increased on the hanging wall. Simulations assuming VSmin values of 500 and 250  m/s reveal that PGVs are on average 25% higher west of the HF when using the lower VSmin, with some locations amplified by a factor of 3. Increasing frequency content from 2.5 to 5 Hz increases PGV values. Spectral ratios of these two VSmin cases show average amplifications of 2–4 (0.5–1.5 Hz) for the lower VSmin west of the fault. Large differences (up to 2×) in PGV across the HF from previous studies persist even for the case with a vertical fault or VSmin of 250  m/s. We conclude that assuming a VSmin of 500  m/s underestimates intensities west of the HF for frequencies above 0.5 Hz, and that low upper crustal (depth <10  km) shear wavespeeds defined in the 3D model contribute most to higher intensities east of the HF.


1999 ◽  
Vol 1999 (1) ◽  
pp. 989-992
Author(s):  
Peter Gautier ◽  
Kent Bauer ◽  
John Tarpley

ABSTRACT In November 1997 and again in January 1998, U.S. Coast Guard Marine Safety Office San Francisco Bay, California Department of Fish and Game Office of Spill Prevention and Response (OSPR), the National Park Service, and the Gulf of the Farallones National Marine Sanctuary responded to “mystery” oil spill incidents in the Point Reyes National Seashore, California area. These spill responses were unique because they were primarily wildlife recovery and rehabilitation operations; very little oil was sighted despite wildlife impacts that rank the event as the fourth worst in California history. A large-scale investigation including the use of multiple laboratories to identify the source of the oil has established a connection between the two spills, but no responsible party has been identified to defray the response costs. As a result of the spills, a significant effort is underway in Northern California to better define the role of wildlife operations within the incident command system and to rethink its organization and protocols. Other lessons to apply to future responses involve the funding issues revolving around the difference between response efforts and natural resource damage assessment when the Oil Spill Liability Trust Fund (OSLTF) is the primary source of funding.


Author(s):  
Susan E. Hough ◽  
Morgan Page ◽  
Leah Salditch ◽  
Molly M. Gallahue ◽  
Madeleine C. Lucas ◽  
...  

ABSTRACT In this study, we revisit the three largest historical earthquakes in California—the 1857 Fort Tejon, 1872 Owens Valley, and 1906 San Francisco earthquakes—to review their published moment magnitudes, and compare their estimated shaking distributions with predictions using modern ground-motion models (GMMs) and ground-motion intensity conversion equations. Currently accepted moment magnitude estimates for the three earthquakes are 7.9, 7.6, and 7.8, respectively. We first consider the extent to which the intensity distributions of all three earthquakes are consistent with a moment magnitude toward the upper end of the estimated range. We then apply a GMM-based method to estimate the magnitudes of large historical earthquakes. The intensity distribution of the 1857 earthquake is too sparse to provide a strong constraint on magnitude. For the 1872 earthquake, consideration of all available constraints suggests that it was a high stress-drop event, with a magnitude on the higher end of the range implied by scaling relationships, that is, higher than moment magnitude 7.6. For the 1906 earthquake, based on our analysis of regional intensities and the detailed intensity distribution in San Francisco, along with other available constraints, we estimate a preferred moment magnitude of 7.9, consistent with the published estimate based on geodetic and instrumental seismic data. These results suggest that, although there can be a tendency for historical earthquake magnitudes to be overestimated, the accepted catalog magnitudes of California’s largest historical earthquakes could be too low. Given the uncertainties of the magnitude estimates, the seismic moment release rate between 1850 and 2019 could have been either higher or lower than the average over millennial time scales. It is further not possible to reject the hypothesis that California seismicity is described by an untruncated Gutenberg–Richter distribution with a b-value of 1.0 for moment magnitudes up to 8.0.


1991 ◽  
Vol 81 (5) ◽  
pp. 2019-2047
Author(s):  
Thomas C. Hanks ◽  
A. Gerald Brady

Abstract The basis of this study is the acceleration, velocity, and displacement wave-forms of the Loma Prieta earthquake (18 October 1989; M = 7.0) at two rock sites in San Francisco, a rock site on Yerba Buena Island, an artificial-fill site on Treasure Island, and three sites in Oakland underlain by thick sections of poorly consolidated Pleistocene sediments. The waveforms at the three rock sites display a strong coherence, as do the three sedimentary sites in Oakland. The duration of strong motion at the rock sites is very brief, suggestive of an unusually short source duration for an earthquake of this size, while the records in Oakland show strong amplification effects due to site geology. The S-wave group at Treasure Island is phase coherent with the Oakland records, but at somewhat diminished amplitudes, until the steps in acceleration at approximately 15 sec, apparently signaling the onset of liquefaction. All seven records clearly show shear-wave first motion opposite to that expected for the mainshock radiation pattern and peak amplitudes greater than expected for sites at these distances (95 ± 3 km) from an earthquake of this magnitude. While the association between these ground motion records and related damage patterns in nearby areas has been easily and eagerly accepted by seismological and engineering observers of them, we have had some difficulty in making such relationships quantitative or even just clear. The three Oakland records, from sites that form a nearly equilateral triangle about the Cypress Street viaduct collapse, are dominated by a long-period resonance (≃ 1 1/2-sec period) far removed from the natural frequency of the structure to transverse motion (2.5 Hz) or from high-frequency amplification bands observed in aftershock studies. A spectral ratio arbiter of this discrepancy confuses it further. The failure of the East Bay crossing of the San Francisco-Oakland Bay Bridge cannot be attributed to relative displacements of the abutments in Oakland and Yerba Buena Island, but the motions of the Bay Bridge causing failure remain unknown. The steps in acceleration at Treasure Island present unusual strong-motion accelerogram processing problems, and modeling suggests that the velocity and displacement waveforms are contaminated by a spurious response of the filtering operations to the acceleration steps. A variety of coincidences suggests that the Treasure island accelerogram is the most likely strong-motion surrogate for the filled areas of the Marina District, for which no mainshock records are available, but the relative contributions of bad ground, poor construction and truly strong ground motion to damage in the Marina District will never by known in any quantitative way. The principal lesson of all of this is that until a concerted effort is mounted to instrument ground and structures that are likely to fail during earthquakes, our understanding of the very complex relationships between strong ground motion and earthquake damage will, in general, remain rudimentary, imprecise, and vague.


1991 ◽  
Vol 81 (5) ◽  
pp. 1923-1944
Author(s):  
A. McGarr ◽  
M. Çelebi ◽  
E. Sembera ◽  
T. Noce ◽  
C. Mueller

Abstract Following the Loma Prieta earthquake, the U.S. Geological Survey installed four portable digital seismic recorders at the San Francisco International Airport (SFO) for one week to study aftershock ground motion at this important Bay area “lifeline.” This study was motivated largely by the need to anticipate strong ground motion from future major earthquakes affecting the Bay area and, to a lesser extent, by the fact that SFO was shut down for 13 hours owing to damage from the Loma Prieta shock. Accordingly, the recording sites were chosen so as to elucidate the effects of varying thicknesses of low-velocity surficial alluvium on the ground motion. Three large aftershocks with magnitudes ranging from 4.2 to 4.5 each produced ground motion that was recorded at all four SFO stations. One of our stations was collocated with a permanent ground motion recorder that indicated a peak horizontal velocity of 29 cm / sec and a peak horizontal acceleration of 0.33 g during the 18 October mainshock. From the aftershock data and one mainshock record, it is possible to extrapolate approximately the mainshock ground motion to other locations at SFO and, more generally, to assess the effects of low-velocity sedimentary cover, including artificial fill material, on the character of the ground motion. The main-shock ground motion recorded at the permanent station was apparently typical for most of SFO where the near-surface alluvium resulted in peak horizontal ground velocity, in the frequency band 0.1 to 3 Hz, amplified by a factor of about 2.5 relative to that recorded at bedrock sites. Observations, in the epicentral distance range 59 to 95 km, including SFO, of the moho-reflected phases PmP and SmS from the aftershocks support the hypothesis, presented elsewhere, that the phase SmS accounted for much of the peak ground motion throughout most of the San Francisco Bay area.


Sign in / Sign up

Export Citation Format

Share Document