Airborne Lidar and Electro-Optical Imagery along Surface Ruptures of the 2019 Ridgecrest Earthquake Sequence, Southern California

2020 ◽  
Vol 91 (4) ◽  
pp. 2096-2107 ◽  
Author(s):  
Kenneth W. Hudnut ◽  
Benjamin A. Brooks ◽  
Katherine Scharer ◽  
Janis L. Hernandez ◽  
Timothy E. Dawson ◽  
...  

Abstract Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the Mw 6.4 foreshock, occurred on 4 July on a ∼17  km long, northeast–southwest-oriented, left-lateral zone of faulting. Following the Mw 7.1 mainshock on 5 July (local time), extensive northwest–southeast-oriented, right-lateral faulting was then also mapped along a ∼50  km long zone of faults, including subparallel splays in several areas. The largest slip was observed in the epicentral area and crossing the dry lakebed of China Lake to the southeast. Surface fault rupture mapping by a large team, reported elsewhere, was used to guide the airborne data acquisition reported here. Rapid rupture mapping allowed for accurate and efficient flight line planning for the high-resolution light detection and ranging (lidar) and aerial photography. Flight line planning trade-offs were considered to allocate the medium (25 pulses per square meter [ppsm]) and high-resolution (80 ppsm) lidar data collection polygons. The National Center for Airborne Laser Mapping acquired the airborne imagery with a Titan multispectral lidar system and Digital Modular Aerial Camera (DiMAC) aerial digital camera, and U.S. Geological Survey acquired Global Positioning System ground control data. This effort required extensive coordination with the Navy as much of the airborne data acquisition occurred within their restricted airspace at the China Lake ranges.

Author(s):  
Jack Koci ◽  
Javier X. Leon ◽  
Ben Jarihani ◽  
Roy C. Sidle ◽  
Scott N. Wilkinson ◽  
...  

Structure from Motion with Multi-View Stereo photogrammetry (SfM) is increasingly utilised in geoscience investigations as a cost-effective method of acquiring high resolution (sub-meter) topographic data, but has not been thoroughly tested in gullied savanna systems. The aim of this study was to test the accuracy of topographic models derived from aerial (via an Unmanned Aerial Vehicle, ‘UAV’) and ground-based (via a handheld digital camera, ‘Ground’) SfM in modelling a hillslope gully system in dry-tropical savanna, and to assess the strengths and limitations of the approach at different scales. A UAV survey covered an entire hillslope gully system (0.715 km2), whereas a Ground survey covered a single gully within the broader system (650 m2). SfM topographic models, including Digital Surface Models (DSM) and dense point clouds, were compared against RTK-GPS point data and a pre-existing airborne LiDAR Digital Elevation Model (DEM). Results indicate UAV SfM can deliver topographic models with a resolution and accuracy suitable to define gully systems at a hillslope scale (e.g., 0.1 m resolution with ~ 0.5 – 1.3 m elevation error), while ground-based SfM is more capable of quantifying gully morphology (e.g., 0.01 m resolution with ~ 0.1 m elevation error). Key strengths of SfM for these applications include: the production of high resolution 3D topographic models and ortho-photo mosaics, low survey instrument costs (< $AUD 3,000); and rapid survey time (4 and 2 hours for UAV and Ground survey respectively). Current limitations of SfM include: difficulties in reconstructing vegetated surfaces; uncertainty as to optimal survey and processing designs; and high computational demands. Overall, this study has demonstrated great potential for SfM to be used as a cost-effective tool to aid in the mapping, modelling and management of hillslope gully systems at different scales, in tropical savanna landscapes and elsewhere.


Author(s):  
Guanning Pang ◽  
Keith Koper ◽  
Maria Mesimeri ◽  
Kristine Pankow ◽  
Benjamin Baker ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haron M. Abdel-Raziq ◽  
Daniel M. Palmer ◽  
Phoebe A. Koenig ◽  
Alyosha C. Molnar ◽  
Kirstin H. Petersen

AbstractIn digital agriculture, large-scale data acquisition and analysis can improve farm management by allowing growers to constantly monitor the state of a field. Deploying large autonomous robot teams to navigate and monitor cluttered environments, however, is difficult and costly. Here, we present methods that would allow us to leverage managed colonies of honey bees equipped with miniature flight recorders to monitor orchard pollination activity. Tracking honey bee flights can inform estimates of crop pollination, allowing growers to improve yield and resource allocation. Honey bees are adept at maneuvering complex environments and collectively pool information about nectar and pollen sources through thousands of daily flights. Additionally, colonies are present in orchards before and during bloom for many crops, as growers often rent hives to ensure successful pollination. We characterize existing Angle-Sensitive Pixels (ASPs) for use in flight recorders and calculate memory and resolution trade-offs. We further integrate ASP data into a colony foraging simulator and show how large numbers of flights refine system accuracy, using methods from robotic mapping literature. Our results indicate promising potential for such agricultural monitoring, where we leverage the superiority of social insects to sense the physical world, while providing data acquisition on par with explicitly engineered systems.


2010 ◽  
Vol 4 (1) ◽  
pp. 53-65 ◽  
Author(s):  
J. Abermann ◽  
A. Fischer ◽  
A. Lambrecht ◽  
T. Geist

Abstract. The potential of high-resolution repeat DEMs was investigated for glaciological applications including periglacial features (e.g. rock glaciers). It was shown that glacier boundaries can be delineated using airborne LIDAR-DEMs as a primary data source and that information on debris cover extent could be extracted using multi-temporal DEMs. Problems and limitations are discussed, and accuracies quantified. Absolute deviations of airborne laser scanning (ALS) derived glacier boundaries from ground-truthed ones were below 4 m for 80% of the ground-truthed values. Overall, we estimated an accuracy of +/−1.5% of the glacier area for glaciers larger than 1 km2. The errors in the case of smaller glaciers did not exceed +/−5% of the glacier area. The use of repeat DEMs in order to obtain information on the extent, characteristics and activity of rock glaciers was investigated and discussed based on examples.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 252 ◽  
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Tvrtko Korbar ◽  
Nikola Belić ◽  
Davorin Penava ◽  
...  

On 22 March 2020, Zagreb was struck by an M5.5 earthquake that had been expected for more than 100 years and revealed all the failures in the construction of residential buildings in the Croatian capital, especially those built in the first half of the 20th century. Because of that, extensive seismological, geological, geodetic and structural engineering surveys were conducted immediately after the main shock. This study provides descriptions of damage, specifying the building performances and their correlation with the local soil characteristics, i.e., seismic motion amplification. Co-seismic vertical ground displacement was estimated, and the most affected area is identified according to Sentinel-1 interferometric wide-swath data. Finally, preliminary 3D structural modeling of the earthquake sequence was performed, and two major faults were modeled using inverse distance weight (IDW) interpolation of the grouped hypocenters. The first-order assessment of seismic amplification (due to site conditions) in the Zagreb area for the M5.5 earthquake shows that ground motions of approximately 0.16–0.19 g were amplified at least twice. The observed co-seismic deformation (based on Sentinel-1A IW SLC images) implies an approximately 3 cm uplift of the epicentral area that covers approximately 20 km2. Based on the preliminary spatial and temporal analyses of the Zagreb 2020 earthquake sequence, the main shock and the first aftershocks evidently occurred in the subsurface of the Medvednica Mountains along a deep-seated southeast-dipping thrust fault, recognized as the primary (master) fault. The co-seismic rupture propagated along the thrust towards northwest during the first half-hour of the earthquake sequence, which can be clearly seen from the time-lapse visualization. The preliminary results strongly support one of the debated models of the active tectonic setting of the Medvednica Mountains and will contribute to a better assessment of the seismic hazard for the wider Zagreb area.


2011 ◽  
Vol 30 (3) ◽  
pp. 13-18
Author(s):  
Piotr Dzieszko

Analogue aerial-photopraphs external orientation reconstruction based on geoportal data For acquisition of source data for geoinformation analyses is necessary to do some field works. This way of data acquisition is time-consuming. In this case, photogrammetric and remote sensed methods can be more effective choice. Especially orthophotomap extracting is more effective process in creation of geodata. It is good foundation for further analysis and nice extension of existing geographical information systems. Despite fast growth of photogrammetry there are plenty of analogue, archival airphotos which can be used for geoinformation analysis. They are quiet up to date and scanned in very high resolution which means they can be used for really reliable analysis. The problem is very important because many of analogue, archival air photos do not contain photogrammetric warp. The aim of this paper is expression of applicability of geoportal webpage, which is part of INSPIRE directive, that can be used for external orientation reconstruction when there is no other georeference data.


Author(s):  
Zhao Sun ◽  
Yifu Wang ◽  
Lei Pan ◽  
Yunhong Xie ◽  
Bo Zhang ◽  
...  

AbstractPine wilt disease (PWD) is currently one of the main causes of large-scale forest destruction. To control the spread of PWD, it is essential to detect affected pine trees quickly. This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD. We used an unmanned aerial vehicle (UAV) platform equipped with an RGB digital camera to obtain high spatial resolution images, and multi-scale segmentation was applied to delineate the tree crown, coupling the use of object-oriented classification to classify trees discolored by PWD. Then, the optimal segmentation scale was implemented using the estimation of scale parameter (ESP2) plug-in. The feature space of the segmentation results was optimized, and appropriate features were selected for classification. The results showed that the optimal scale, shape, and compactness values of the tree crown segmentation algorithm were 56, 0.5, and 0.8, respectively. The producer’s accuracy (PA), user’s accuracy (UA), and F1 score were 0.722, 0.605, and 0.658, respectively. There were no significant classification errors in the final classification results, and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation. The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing. This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.


Sign in / Sign up

Export Citation Format

Share Document