Crustal structure in the Gangetic Plains of the Indian sub-continent from body waves

1974 ◽  
Vol 64 (3-1) ◽  
pp. 571-579
Author(s):  
R. K. Dube ◽  
J. C. Bhayana

abstract Crustal structure in the Gangetic Plains of India has been investigated using body-wave data of earthquakes. A three-layered crust has been interpreted, consisting of a top layer of 2.7-km/sec P-wave velocity and 3.7-km thickness, an intermediate layer of 5.64-km/sec velocity and 15.2-km thickness and a bottom layer of 6.49-km/sec velocity and 21.4-km thickness. The average depth of the M discontinuity obtained is 40.3 km. The shear-wave velocities for the Sg, S*, Sn phases are 3.45, 3.85 and 4.61 km/sec, respectively. The velocities of both P and S waves are lower than those obtained for the Peninsular Shield of India.

1984 ◽  
Vol 74 (2) ◽  
pp. 361-376
Author(s):  
John Boatwright ◽  
Jon B. Fletcher

Abstract Seventy-three digitally recorded body waves from nine multiply recorded small earthquakes in Monticello, South Carolina, are analyzed to estimate the energy radiated in P and S waves. Assuming Qα = Qβ = 300, the body-wave spectra are corrected for attenuation in the frequency domain, and the velocity power spectra are integrated over frequency to estimate the radiated energy flux. Focal mechanisms determined for the events by fitting the observed displacement pulse areas are used to correct for the radiation patterns. Averaging the results from the nine events gives 27.3 ± 3.3 for the ratio of the S-wave energy to the P-wave energy using 0.5 〈Fi〉 as a lower bound for the radiation pattern corrections, and 23.7 ± 3.0 using no correction for the focal mechanisms. The average shift between the P-wave corner frequency and the S-wave corner frequency, 1.24 ± 0.22, gives the ratio 13.7 ± 7.3. The substantially higher values obtained from the integral technique implies that the P waves in this data set are depleted in energy relative to the S waves. Cursory inspection of the body-wave arrivals suggests that this enervation results from an anomalous site response at two of the stations. Using the ratio of the P-wave moments to the S-wave moments to correct the two integral estimates gives 16.7 and 14.4 for the ratio of the S-wave energy to the P-wave energy.


1978 ◽  
Vol 68 (4) ◽  
pp. 1013-1030
Author(s):  
L. J. Burdick

abstract The purpose of this study was to determine t* for S waves with ray paths under the continental United States. The data set consists of long- and short-period body waves from the Borrego Mountain earthquake as observed in the northeastern U.S. The P wave forms are dominated by the sP phase and the SH wave forms by the sS. It is assumed that there are no losses in pure compression so that the relative attenuation rate of P and S waves is known. The initial source radiation is determined from the sP phase and the value of tβ* from the spectral content of the S wave. The results indicate that tβ* is 5.2 ± 0.7 sec along this ray path. Long- and short-period body waves from some deep South American events are used to test for lateral asymmetry of the Q distribution under the U.S. No lateral amplitude variation exists in this data, but this result is difficult to correlate with many previous results. The t°* value for a 600-km deep earthquake appears to be about 3 sec. A comparison of these values with values computed from current models of the Earth's Q distribution indicates that the models are slightly too high in Q overall and that more of the total body-wave attenuation occurs above 600 km than is indicated by the models.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 339-354 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.


2020 ◽  
Author(s):  
Louise Watremez ◽  
Sylvie Leroy ◽  
Elia d'Acremont ◽  
Stéphane Rouzo

<p>The Gulf of Aden is a young and active oceanic basin, which separates the south-eastern margin of the Arabian Plate from the Somali Plate. The rifting leading to the formation of the north-eastern Gulf of Aden passive margin started ca. 34 Ma ago when the oceanic spreading in this area initiated at least 17.6 Ma ago. The opening direction (N26°E) is oblique to the mean orientation of the Gulf (N75°E), leading to a strong structural segmentation.</p><p>The Encens cruise (2006) allowed for the acquisition of a large seismic refraction dataset with profiles across (6 lines) and along (3 lines) the margin, between the Alula-Fartak and Socotra-Hadbeen fracture zones, which define a first order segment of the Gulf. P-wave velocity modelling already allowed us to image the crustal thinning and the structures, from continental to oceanic domains, along some of the profiles. A lower crustal intermediate body is observed in the Ashawq-Salalah segment, at the base of the transitional and oceanic crusts. The nature of this intermediate body is most probably mafic, linked to a post-rift thermal anomaly. The thin (1-2 km) sediment layer in the study area allows for a clear conversion of P-waves to S-waves at the top basement. Thus, most seismic refraction records show very clear S-wave arrivals.</p><p>In this study, we use both P-wave and S-wave arrivals to delineate the crustal structures and segmentation along and across the margin and add insight into the nature of the rocks below the acoustic basement. P-wave velocity modelling allows for the delineation of the structure variations across and along the margin. The velocity models are used as a base for the S-wave modelling, through the definition of Poisson’s ratios in the different areas of the models. Picking and modelling of S-wave arrivals allow us to identify two families of converted waves: (1) seismic waves converted at the basement interface on the way up, just before arriving to the OBS and (2) seismic waves converted at the basement on the way down, which travelled into the deep structures as S-waves. The first set of arrivals allows for the estimation the S-wave velocities (Poisson’s ratio) in the sediments, showing that the sediments in this area are unconsolidated and water saturated. The second set of arrivals gives us constraints on the S-wave velocities below the acoustic basement. This allows for an improved mapping of the transitional and oceanic domains and the confirmation of the mafic nature of the lower crustal intermediate body.</p>


1995 ◽  
Vol 85 (1) ◽  
pp. 254-268 ◽  
Author(s):  
Jie Zhang ◽  
Charles A. Langston

Abstract Teleseismic broadband P and S waves recorded at the NARS station NE06 (Dourbes, Belgium) are shown to exhibit strong anomalous particle motion not attributable to instrument miscalibration or malfunction. Azimuthally varying radial and tangential components have been observed on 38 recordings after vector rotation of horizontal P waves into the ray direction. The tangenital P waves attain amplitudes comparable to the radial components from the east with negative polarity and west with positive polarity, but tend to be zero in the north and south, suggesting major discontinuities in the crust dipping southward. The SH wave from the east contains a large SPmP phase, an S-to-P conversion at the free surface and then reflected back to the surface from the Moho. The polarity of this SPmP phase presents further evidence for a southward-dipping Moho. We employ ray theory for three-dimensionally dipping interfaces to compute the P-wave response. Linear inverse theory with smoothness constraints is applied to the simultaneous inversions of P-wave receiver functions for four different backazimuths. Through the progressive change of interface strike and dip and the inversion of layer shear-wave velocities, a dipping crustal model that is consistent with both the observed waveforms and results of previous local geophysical surveys has been determined. The results suggest a large velocity contrast in the shallow structure near the surface, another major interface at a depth of 12 km with dip of 10°, and a seismically transparent unit below the interface. The interface at a depth of 12 km reportedly emerges at the Midi fault 50 km north of the station NE06.


1972 ◽  
Vol 62 (5) ◽  
pp. 1183-1193 ◽  
Author(s):  
F. A. Dahlen

Abstract The effect of a homogeneous anisotropic initial stress on the propagation of infinitesimal amplitude elastic body waves in a perfectly elastic, homogeneous medium is investigated. If the medium is inherently isotropic in the reference configuration and if the magnitude τ0 of the deviatoric part of the initial static stress is small compared to the rigidity μ of the medium, then the apparent body-wave velocities of P waves are unaffected by the initial stress to first order in τ0/μ. The apparent body-wave velocities of S waves are rendered anisotropic to first order, and this effect is described explicitly. It is concluded that the direct effect of an anisotropic initial stress cannot contribute appreciably to the observed velocity anisotropy of horizontally propagating P waves in the oceanic upper mantle. Those observations require an inherent elastic anisotropy of the oceanic uppermantle material.


1992 ◽  
Vol 4 (4) ◽  
pp. 469-476 ◽  
Author(s):  
M. Grad ◽  
A. Guterch ◽  
P. Środa

This paper describes the results of seismic refraction investigations of the upper crustal structure in the area of Deception Island, West Antarctica, which were made during the Polish Antarctic Geodynamical Expeditions in 1979-80 and 1987-88. In the caldera and immediate vicinity of Deception Island a layer of unconsolidated and poorly consolidated young sediments of 1.9–2.2 km s−1 P-wave velocity was found. Velocities of 4.1–4.3 km s−1 were found in the depth interval from 0.6–1.3 to about 3 km. Lateral differences in upper crustal structure between the south-eastern and western sectors were identified. In the region between Deception and Livingston islands an inclined boundary with a velocity of about 6.1 km s−1 occurs. A deep fault zone dividing crustal blocks beneath Deception Island is associated with a prominent volcanic line within Bransfield Strait extending between Deception and Bridgeman islands.


Geophysics ◽  
1990 ◽  
Vol 55 (2) ◽  
pp. 185-191 ◽  
Author(s):  
D. A. Ebrom ◽  
R. H. Tatham ◽  
K. K. Sekharan ◽  
J. A. McDonald ◽  
G. H. F. Gardner

Wave propagation in a fractured medium is modeled physically using layers of Plexiglas with thin films of water, held under moderate uniaxial confining pressure. The system exhibits anisotropy comparable to that of measured earth materials; i.e., shear‐wave splitting to waves with 3 percent velocity differences and P-wave directional anisotropy of at least 20 percent. SV polarizations demonstrate the concept of the shear‐wave window with the conversion of an SV body wave to an internal head wave with P-wave velocity, a head wave which is present in both the fractured medium and the control solid (unfractured) medium. For an azimuthally anisotropic medium, moveout curves are hyperbolic for a surface line oriented parallel to the fractures but are nonhyperbolic for a line oriented perpendicular to the fractures. Q anisotropy is observed in the system, with strongest attenuation on propagation paths perpendicular to the fractures.


2018 ◽  
Vol 29 ◽  
pp. 00019
Author(s):  
Katarzyna Hubicka ◽  
Jakub Sokolowski

Seismic event consists of surface waves and body waves. Due to the fact that the body waves are faster (P-waves) and more energetic (S-waves) in literature the problem of their analysis is taken more often. The most universal information that is received from the recorded wave is its moment of arrival. When this information is obtained from at least four seismometers in different locations, the epicentre of the particular event can be estimated [1]. Since the recorded body waves may overlap in signal, the problem of wave onset moment is considered more often for faster P-wave than S-wave. This however does not mean that the issue of S-wave arrival time is not taken at all. As the process of manual picking is time-consuming, methods of automatic detection are recommended (these however may be less accurate). In this paper four recently developed methods estimating S-wave arrival are compared: the method operating on empirical mode decomposition and Teager-Kaiser operator [2], the modification of STA/LTA algorithm [3], the method using a nearest neighbour-based approach [4] and the algorithm operating on characteristic of signals’ second moments. The methods will be also compared to wellknown algorithm based on the autoregressive model [5]. The algorithms will be tested in terms of their S-wave arrival identification accuracy on real data originating from International Research Institutions for Seismology (IRIS) database.


Sign in / Sign up

Export Citation Format

Share Document