Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data

1990 ◽  
Vol 80 (4) ◽  
pp. 807-831 ◽  
Author(s):  
Jon B. Fletcher ◽  
Tom Fumal ◽  
Hsi-Ping Liu ◽  
Linda C. Carroll

Abstract To investigate near-surface site effects in granite rock, we drilled 300-m-deep boreholes at two sites which are collocated with stations from the digital array at Anza, California. The first borehole was sited at station KNW (Keenwild fire station), which is located along a ridge line about 8.7 km east of the San Jacinto Fault zone. Station PFO (Piñon Flat Observatory), chosen for the second site, is another 6 km further to the east of station KNW and is located on a gently sloping hillside. We logged each borehole for P- and S-wave velocities, as well as for crack density and orientation. P waves were generated by striking a plate with a hammer at the surface. A tool consisting of weighted anvils driven by compressed air against end plates along a 3.5-m beam was used to generate shear waves. Signals were recorded downhole with a three-component sensor package at 2.5-m intervals from the surface to 50 m depth, and at 5-m intervals from 50 m depth to the bottom of the hole. Velocities were determined by differencing the measured arrival times of first arrivals or peaks over each interval in depth. Travel times were computed for the first breaks at shallow depths, however, below about 100 m depth, times were computed for the first peaks rather than for first breaks since the first arrival was no longer clearly distinguishable. The KNW site yielded a shear velocity of 1.9 km/sec by only 30 m in depth and reached close to 2.6 km/sec at the bottom of the hole. P-wave velocities at KNW were also high at 5.4 km/sec starting at 120 m depth. The PFO site had similar but slightly higher shear-wave velocities. The bottom-hole shear-wave velocity reached 3.0 km/sec, and the P-wave velocity was 5.4 km/sec. Shear-wave attenuation was computed using both the pulse rise time and spectral ratio methods. At station KNW, attenuation was significant only in an interval between 17.5 and approximately 40 m in depth. Over the top 50 m, attenuation corresponding to a Q of about 8 was obtained. A total T* of 0.004 sec was measured for this interval. Pulse rise times also increased rapidly in this zone. The spectral ratio data for station PFO yields two peaks in attenuation above 50 m. Similar to the attenuation found for station KNW, the peak in attenuation corresponds to a Q of about 11, averaged over the top 50 m. Spectra of the seismic pulses produced by the hammer give good signal between 20 to 80 Hz. Significant motion perpendicular to the polarizations of the first shear-wave arrival was recorded within a few meters of the surface. Apparently, the rock structure is sufficiently complicated that body waves are being converted (SH to SV at oblique incidence) very close to the surface. The presence of these elliptical particle motions within a mere few m of the pure shear-wave source suggests that the detection of polarizations perpendicular to the main shear arrival at a single location at the surface is not, by itself, a good method for detecting shearwave splitting within the upper few tens of kilometers of the earth's crust. Crack densities and orientations were determined from televiewer records. These records showed cracks with a preferred direction at station KNW and of a greater density than at station PFO. At station PFO, crack densities were smaller and more diffuse in orientation.

Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1627-1633 ◽  
Author(s):  
Bart W. Tichelaar ◽  
Klaas W. van Luik

Borehole sonic waveforms are commonly acquired to produce logs of subsurface compressional and shear wave velocities. To this purpose, modern borehole sonic tools are usually equipped with various types of acoustic sources, i.e., monopole and dipole sources. While the dipole source has been specifically developed for measuring shear wave velocities, we found that the dipole source has an advantage over the monopole source when determining compressional wave velocities in a very slow formation consisting of unconsolidated sands with a porosity of about 35% and a shear wave velocity of about 465 m/s. In this formation, the recorded compressional refracted waves suffer from interference with another wavefield component identified as a leaky P‐wave, which hampers the determination of compressional wave velocities in the sands. For the dipole source, separation of the compressional refracted wave from the recorded waveforms is accomplished through bandpass filtering since the wavefield components appear as two distinctly separate contributions to the frequency spectrum: a compressional refracted wave centered at a frequency of 6.5 kHz and a leaky P‐wave centered at 1.3 kHz. For the monopole source, the frequency spectra of the various waveform components have considerable overlap. It is therefore not obvious what passband to choose to separate the compressional refracted wave from the monopole waveforms. The compressional wave velocity obtained for the sands from the dipole compressional refracted wave is about 2150 m/s. Phase velocities obtained for the dispersive leaky P‐wave excited by the dipole source range from 1800 m/s at 1.0 kHz to 1630 m/s at 1.6 kHz. It appears that the dipole source has an advantage over the monopole source for the data recorded in this very slow formation when separating the compressional refracted wave from the recorded waveforms to determine formation compressional wave velocities.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huifen Han ◽  
Junliang Peng ◽  
Yintong Guo ◽  
Qiuyun He ◽  
Jun Zhou ◽  
...  

Understanding the mechanical properties of the reservoir rock under different temperatures after rapid thermal cooling is necessary for safe and effective deep geoengineering applications, including deep mining projects, deep geological disposal of nuclear waste, and geothermal energy extraction. This paper is devoted to investigating the effect of rapid cooling on the mechanical behavior of the granite rock. At first, high-temperature heating was conducted. The 24 samples were divided into six groups and were heated at 100, 200, 300, 400, 500, and 600°C, and once they had reached the chosen temperature, they were immediately cooled with a cold water container, and the temperature of water in the pan was 25°C. After the thermal treatment, the samples were measured using ultrasonic wave velocities, and then they were deformed under uniaxial and triaxial compression tests. The P -wave velocity, damage characteristics, stress-strain curves, compressive strength, and Young’s modulus of the samples were presented considering different thermal temperatures. The results confirmed that the P -wave velocities of the samples generally decrease with temperature. P-wave velocity can indirectly reflect the damage of the rock structure. These changes represent a negative exponential relationship between P -wave velocity and hold temperature following cooling. As the samples experienced greater temperatures, the peak strength and elastic characteristics also significantly reduced. This is mainly due to thermally induced damage in the form of both intergranular and intragranular cracks. The stress-strain response revealed that the failure mode can change from brittle to quasi-brittle fracturing following treatment at increasingly greater temperatures.


2020 ◽  
Vol 223 (2) ◽  
pp. 1355-1377
Author(s):  
Farhad Sedaghati ◽  
Sahar Rahpeyma ◽  
Anooshiravan Ansari ◽  
Shahram Pezeshk ◽  
Mehdi Zare ◽  
...  

SUMMARY Tien Shan of central Asia is known as one of the world's largest, youngest and most active intracontinental orogens. In this study, we implemented the horizontal-to-vertical spectral ratio (HVSR) technique as a widely used first-order approximation of the site effect parameters (i.e. fundamental frequency and site amplification). A set of data including 2119 strong-motion recordings from 468 earthquakes with hypocentral distances up to 500 km and small to moderate moment magnitudes ($ {M_{\rm{w}}}\sim $3.0–5.5) recorded by 24 broad-band stations from five different networks, located in Afghanistan, Tajikistan and Kyrgyzstan was deployed to investigate site-specific characteristics. We fitted a Gaussian-shape pulse function to evaluate fundamental frequencies and site amplifications. The HVSRs analysis revealed that although the majority of the stations (16 out of 24) show flat amplification functions, there are few stations with single sharp amplification functions. Then, we classified the stations based on the predominant frequency. Furthermore, we approximated the time-averaged shear wave velocity in the uppermost 30 m (${V_{{\rm{S}}30}}$) using the fundamental frequency and its corresponding amplitude. Moreover, we compared the HVSRs obtained from P waves, S waves, coda and pre-event noise. All peak frequencies including the fundamental frequency estimated from different seismic phases are in good agreement; whereas generally, the amplitude of the P-wave window is the lowest, the amplitudes of the S wave and noise windows are similar to the whole record and the amplitudes of early and late coda windows are the highest. We also observed that the HVSRs of noise using a 5 s window may have anomalous high amplitudes and peaks. These anomalous high amplitudes and peaks in the noise HVSRs indicate the existence of some unnatural sources or artefacts such as traffic and wind with specific resonance frequencies, suggesting 5 s ambient noise window is insufficient to capture site characteristics. Finally, to assess the reliability of the determined geotechnical results, we implemented a blind theoretical HVSR inversion to obtain representative shear wave velocity profiles as well as ${V_{{\rm{S}}30}}$ along with associated uncertainties for stations characterized by a single-peak HVSR curve using a Bayesian statistical framework.


1982 ◽  
Vol 19 (8) ◽  
pp. 1535-1547 ◽  
Author(s):  
C. Wright

Seismological experiments have been undertaken at a test site near Chalk River, Ontario that consists of crystalline rocks covered by glacial sediments. Near-surface P and S wave velocity and amplitude variations have been measured along profiles less than 2 km in length. The P and S wave velocities were generally in the range 4.5–5.6 and 2.9–3.2 km/s, respectively. These results are consistent with propagation through fractured gneiss and monzonite, which form the bulk of the rock body. The P wave velocity falls below 5.0 km/s in a region where there is a major fault and in an area of high electrical conductivity; such velocity minima are therefore associated with fracture systems. For some paths, the P and 5 wave velocities were in the ranges 6.2–6.6 and 3.7–4.1 km/s, respectively, showing the presence of thin sheets of gabbro. Temporal changes in P travel times of up to 1.4% over a 12 h period were observed where the sediment cover was thickest. The cause may be changes in the water table. The absence of polarized SH arrivals from specially designed shear wave sources indicates the inhomogeneity of the test site. A Q value of 243 ± 53 for P waves was derived over one relatively homogeneous profile of about 600 m length. P wave velocity minima measured between depths of 25 and 250 m in a borehole correlate well with the distribution of fractures inferred from optical examination of borehole cores, laboratory measurements of seismic velocities, and tube wave studies.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. P45-P56 ◽  
Author(s):  
Guy Drijkoningen ◽  
Nihed el Allouche ◽  
Jan Thorbecke ◽  
Gábor Bada

Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called “nongeometrical” because the evanescent part in the water does not satisfy Snell’s law for real angles, but only for complex angles. The propagating shear waves then undergo reflection and refraction in the subsurface, and arrive at the receivers via an evanescent compressional wave. The required circumstances are that sources and receivers are near the water bottom, irrespective of the total water depth, and that the shear-wave velocity of the water bottom is smaller than the P-wave velocity in the water, most often the normal situation. This claim has been tested during a seismic experiment in the river Danube, south of Budapest, Hungary. To show that the shear-related arrivals are body rather than surface waves, a borehole was drilled and used for multicomponent recordings. The streamer data indeed show evidence of shear waves propagating as body waves, and the borehole data confirm that these arrivals are refracted shear waves. To illustrate the effect, finite-difference modeling has been performed and it confirmed the presence of such shear waves. The streamer data were subsequently processed to obtain a shear-wave refraction section; this was obtained by removing the Scholte wave arrival, separating the wavefield into different refracted arrivals, stacking and depth-converting each refracted arrival before adding the different depth sections together. The obtained section can be compared directly with the standard P-wave reflection section. The comparison shows that this approach can deliver refracted-shear-wave sections from streamer data in an efficient manner, because neither the source nor receivers need to be situated on the water bottom.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 323-325 ◽  
Author(s):  
Gregory S. Baker ◽  
Don W. Steeples ◽  
Chris Schmeissner

Seismic P-wave velocities in near‐surface materials can be much slower than the speed of sound waves in air (normally 335 m/s or 1100 ft/s). Difficulties often arise when measuring these low‐velocity P-waves because of interference by the air wave and the air‐coupled waves near the seismic source, at least when gathering data with the more commonly used shallow P-wave sources. Additional problems in separating the direct and refracted arrivals within ∼2 m of the source arise from source‐generated nonlinear displacement, even when small energy sources such as sledgehammers, small‐caliber rifles, and seismic blasting caps are used. Using an automotive spark plug as an energy source allowed us to measure seismic P-wave velocities accurately, in situ, from a few decimeters to a few meters from the shotpoint. We were able to observe three distinct P-wave velocities at our test site: ∼130m/s, 180m/s, and 300m/s. Even the third layer, which would normally constitute the first detected layer in a shallow‐seismic‐refraction survey, had a P-wave velocity lower than the speed of sound in air.


1982 ◽  
Vol 19 (4) ◽  
pp. 506-507 ◽  
Author(s):  
T. J. Larkin ◽  
P. W. Taylor

In a previous paper by the same authors the values of the shear-wave velocity in natural soils found from laboratory tests were compared with wave velocities measured in situ. Dynamic free-vibration torsion tests were carried out in the laboratory on undisturbed 150 × 75 mm soil samples. Downhole seismic tests were performed at the site to measure the velocity of propagation of low strain shear waves from a surface wave source. Differences between laboratory and field values of the shear-wave velocity were considered to be due to sample disturbance. Further work has established that, provided system compliance in the laboratory apparatus is allowed for, laboratory and field values agree reasonably well. The test results are analysed again with account being taken of the stiffness of the laboratory apparatus.


Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 386 ◽  
Author(s):  
Rexha Verdhora Ry ◽  
Phil Cummins ◽  
Sri Widiyantoro

Noting the importance of evaluating near-surface geology in earthquake risk assessment, we explored the application to the Jakarta Basin of a relatively new and simple technique to map shallow seismic structure using body-wave polarization. The polarization directions of P-waves are sensitive to shear-wave velocities (Vs), while those of S-waves are sensitive to both body-wave velocities. Two dense, temporary broadband seismic networks covering Jakarta city and its vicinity were operated for several months, firstly, from October 2013 to February 2014 consisting of 96 stations, and secondly, between April and October 2018 consisting of 143 stations. By applying the polarization technique to earthquake signals recorded during these deployments, the apparent half-space shear-wave velocity (Vsahs) beneath each station is obtained, providing spatially dense coverage of the sedimentary deposits and the edge of the basin. The results showed that spatial variations in Vsahs obtained from polarization analysis are compatible with previous studies, and appear to reflect the average Vs of the top 150 m. The low Vs that characterizes sedimentary deposits dominates most of the area of Jakarta, and mainly reaches the outer part of its administrative margin to the southwest, more than 10 km away. Further study is required to obtain a complete geometry of the Jakarta Basin. In agreement with previous studies, we found that the polarization technique was indeed a simple and effective method for estimating near-surface Vs that can be implemented at very low-cost wherever three-component seismometers are operated, and it provides an alternative to the use of borehole and active source surveys for such measurements. However, we also found that for deep basins such as Jakarta, care must be taken in choosing window lengths to avoid contamination of basement converted phases.


2018 ◽  
Vol 34 (4) ◽  
pp. 1955-1971 ◽  
Author(s):  
Yu Miao ◽  
Yang Shi ◽  
Su-Yang Wang

Using initial P-wave records at 298 seismic stations from the Kiban-Kyoshin network (KiK-net), the P-wave seismograms method is employed to estimate the near-surface shear wave velocity in Japan. The applicability of this method is validated by comparisons between the measured and estimated time-averaged shear wave velocity to depth Z( V SZ, 5< Z < 300 m). Using a second-order polynomial regression relating log V SZ and log V S30, the estimated V S30 values agree well with the measured values. We also find that V S30 is directly related with the ratio of radial to vertical components of the initial P-wave velocity time series ( R P). Compared with the theoretical method, the empirical relationship between R P and V S30 has an improvement in the accuracy for V S30 estimation, is basically region-independent for Japan and Central and Eastern North America (CENA), does not need any other parameters, and is potentially useful for other regions of the world.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Raju Sarkar ◽  
Sreevalsa Kolathayar ◽  
Dowchu Drukpa ◽  
Kinley Choki ◽  
Shrijana Rai ◽  
...  

AbstractIt is essential to understand the soil characteristics of the subsurface layers for any engineering construction. In difficult terrains like hilly areas, conventional methods of investigation are expensive and difficult to conduct. It calls for nondestructive testing methods to get reliable estimates of subsurface properties. In the present study, seismic refraction tomography (SRT) technique and multichannel analysis of surface waves (MASW) methods were carried out along five selected profiles in Phuentsholing region of Bhutan Himalaya. The profile length ranges from 37 to 81.5 m, and depth of imaging down to 10 m. While the SRT data imaged the P-wave velocity (Vp) structures, the MASW imaged the shear wave velocity (Vs) structures. The P-wave images provide a fair knowledge of geological layers, while the MASW images provide S-wave velocity structures (Vs). These results are useful to estimate soil parameters, like the density, Poisson’s ratio, Young’s modulus, shear modulus, N-value and the ultimate bearing capacity. The seismic images reveal the presence of sand, sandy clay, gravels and shale layers below the selected sites. Bhutan Himalayas being seismically vulnerable, the obtained results in terms of shear wave velocity were accustomed to categorize the sites as per NEHRP site classes, and a ground response analysis was performed to determine the reliable amplification factors. From the study, it is suggested that the engineering construction is feasible at all the sites except in one site, where an indication of saturated soil is observed which is vulnerable for liquefaction, and ground needs to be improved before construction at that site.


Sign in / Sign up

Export Citation Format

Share Document