scholarly journals Design and Analysis of the Satellite Structure for the Development of the Earth-Observation Satellites

2017 ◽  
Vol 19 (4) ◽  
pp. 464-471
Author(s):  
이경보
Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4066 ◽  
Author(s):  
Agapiou ◽  
Alexakis ◽  
Hadjimitsis

Earth observation sensors continually provide datasets with different spectral and spatial characteristics, while a series of pre- and postprocessing techniques are needed for calibration purposes. Nowadays, a variety of satellite images have become accessible to researchers, while big data cloud platforms allow them to deal with an extensive number of datasets. However, there is still difficulty related to these sensors meeting specific needs and challenges such as those of cultural heritage and supporting archaeological research world-wide. The harmonization and synergistic use of different sensors can be used in order to maximize the impact of earth observation sensors and enhance their benefit to the scientific community. In this direction, the Committee on Earth Observation Satellites (CEOS) has proposed the concept of virtual constellations, which is defined as “a coordinated set of space and/or ground segment capabilities from different partners that focuses on observing a particular parameter or set of parameters of the Earth system”. This paper provides an overview of existing and future earth observation sensors, the various levels of interoperability as proposed by Wulder et al., and presents some preliminary results from the Thessalian plain in Greece using integrated optical and radar Sentinel images. The potential for archaeolandscape studies using virtual constellations is discussed here.


2021 ◽  
Vol 40 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Dominique Dubucq ◽  
Leo Turon ◽  
Benoit Blanco ◽  
Hélène Bideaud

In the last seven years, many earth observation satellites from national agencies and commercial providers have been launched, making huge volumes of data freely available to anyone. Open-access software and cloud computing tools also have been developed by the earth observation community. Those, as well as new sensors and vectors such as drone-borne hyperspectral cameras or gas-sensing systems are opening a number of applications for the oil and gas industry in exploration, production, and environmental monitoring.


2019 ◽  
Vol 4 (10) ◽  
pp. 127-130
Author(s):  
Shkelzen Cakaj ◽  
Bexhet Kamo

Data processing related to the Earth’s changes, gathered from different platforms and sensors implemented worldwide and monitoring the environment and structure represents Earth observation (EO). Environmental monitoring includes changes in Earth’s vegetation, atmospheric gas content, ocean state, melting level in the ice fields, etc. This process is mainly performed by satellites. The Earth observation satellites use Low Earth Orbits (LEO) for their missions. These missions are accomplished mainly based on photo imagery. Thus, the relative Sun’s position related to the observed area, it is very important for the photo imagery, in order the observed area from the satellite to be treated under the same lighting (illumination) conditions. This could be achieved by keeping a constant Sun position related to the orbital plane due to the Earth’s motion around the Sun. This is called Sun synchronization for low Earth orbits, the feature which is applied for satellites dedicated for the Earth observation. Nodal regression is the phenomenon which is utilized for low circular orbits providing to them the Sun synchronization. Nodal regression refers to the shift of the orbit’s line of nodes over time as Earth revolves around the Sun,  caused due to the Earth’s oblateness. Nodal regression depends on orbital altitude and orbital inclination angle. For the in advance defined range of altitudes stems the inclination window for the satellite low Earth orbits to be Sun synchronized. For analytical and simulation purposes, the altitudes from 600km to 1200km are considered. Further for the determined inclination window of the Sun synchronization it is simulated the orbital perigee deviation for the above considered altitudes and the eventual impact on the satellite’s mission.


Author(s):  
Madel Carmen Muñoz Rodríguez ◽  
Juan Manuel de Faramiñán Gilbert
Keyword(s):  

GIS Business ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 12-14
Author(s):  
Eicher, A

Our goal is to establish the earth observation data in the business world Unser Ziel ist es, die Erdbeobachtungsdaten in der Geschäftswelt zu etablieren


2021 ◽  
Vol 13 (11) ◽  
pp. 2201
Author(s):  
Hanlin Ye ◽  
Huadong Guo ◽  
Guang Liu ◽  
Jinsong Ping ◽  
Lu Zhang ◽  
...  

Moon-based Earth observations have attracted significant attention across many large-scale phenomena. As the only natural satellite of the Earth, and having a stable lunar surface as well as a particular orbit, Moon-based Earth observations allow the Earth to be viewed as a single point. Furthermore, in contrast with artificial satellites, the varied inclination of Moon-based observations can improve angular samplings of specific locations on Earth. However, the potential for estimating the global outgoing longwave radiation (OLR) from the Earth with such a platform has not yet been fully explored. To evaluate the possibility of calculating OLR using specific Earth observation geometry, we constructed a model to estimate Moon-based OLR measurements and investigated the potential of a Moon-based platform to acquire the necessary data to estimate global mean OLR. The primary method of our study is the discretization of the observational scope into various elements and the consequent integration of the OLR of all elements. Our results indicate that a Moon-based platform is suitable for global sampling related to the calculation of global mean OLR. By separating the geometric and anisotropic factors from the measurement calculations, we ensured that measured values include the effects of the Moon-based Earth observation geometry and the anisotropy of the scenes in the observational scope. Although our results indicate that higher measured values can be achieved if the platform is located near the center of the lunar disk, a maximum difference between locations of approximately 9 × 10−4 W m−2 indicates that the effect of location is too small to remarkably improve observation performance of the platform. In conclusion, our analysis demonstrates that a Moon-based platform has the potential to provide continuous, adequate, and long-term data for estimating global mean OLR.


Sign in / Sign up

Export Citation Format

Share Document