scholarly journals A Study of Palladium-Nickel Catalyst for Direct Synthesis of Hydrogen Peroxide: A DFT Approach

2020 ◽  
Vol 5 (2) ◽  
pp. 46-55
Author(s):  
Mawan Nugraha ◽  
◽  
Susiani Pupon ◽  
Nofiandri Setyasmara ◽  
◽  
...  

Hydrogen peroxide is an important material for bleaching agent in paper production related to the low price and environmentally friendly chemical. The current production of H2O2 is well-known as indirect synthesis, which uses danger anthraquinone. The synthesis was improved by using the direct reaction of H2 and O2 on Pd or PdAu alloy's catalyst surface and has been known as direct synthesis. The current catalyst used is Pd-Au, but it has limited availability in nature. Therefore we need the alternative of Pd-Au. We investigated Ni alloyed with Pd for the new H2O2 direct synthesis catalyst using a density functional theory approach. We selected the O adsorption to screen the catalysts and compared the species adsorption trend on the surfaces of PdNi and the proven catalysts such as Pd, PdAu, and PdHg. Since the trend of O adsorption on the PdAu and PdNi is similar, it can be concluded that the catalytic selectivity of PdNi equal with PdAu. Further, the stability of PdNi alloy was explored by calculating the binding and compared it with Pd, which leads to the conclusion that PdNi can be a good catalyst for H2O2 synthesis.

2018 ◽  
Vol 3 (6) ◽  
pp. 896-907 ◽  
Author(s):  
Mawan Nugraha ◽  
Meng-Che Tsai ◽  
Wei-Nien Su ◽  
Hung-Lung Chou ◽  
Bing Joe Hwang

New concepts combining thermodynamic and kinetic parameters for designing catalysts with high selectivity.


2010 ◽  
Vol 44 (7) ◽  
pp. 751-778 ◽  
Author(s):  
Li-Bo Du ◽  
Lan-Fen Wang ◽  
Yang-Ping Liu ◽  
Hong-Ying Jia ◽  
Yang Liu ◽  
...  

2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2003 ◽  
Vol 68 (12) ◽  
pp. 2322-2334 ◽  
Author(s):  
Robert Vianello ◽  
Zvonimir B. Maksić

The electronic and energetic properties of thymine (1) and 2-thiothymine (2) and their neutral and positively charged radicals are considered by a combined ab initio and density functional theory approach. It is conclusively shown that ionization of 1 and 2 greatly facilitates deprotonation of the formed radical cations thus making the proton transfer between charged and neutral precursor species thermodynamically favourable. The adiabatic ionization potential of 1 and 2 are analysed. It appears that ADIP(1) is larger than ADIP(2) by 10 kcal/mol, because of greater stability of the highest occupied molecular orbital (HOMO) of the former. It is also shown beyond any doubt that the spin density in neutral and cationic radical of 2 is almost exclusively placed on the σ-3p AO of sulfur implying that these two systems represent rather rare sigma-radicals. In contrast, the spin density of radicals of 1 is distributed over their π-network.


Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


Sign in / Sign up

Export Citation Format

Share Document